Advertisement

Environment, Development and Sustainability

, Volume 21, Issue 1, pp 249–262 | Cite as

Greenhouse gas emissions in conversion from extensive pasture to other agricultural systems in the Andean region of Colombia

  • Amanda Silva Parra
  • Eduardo Barretto de Figueiredo
  • Ricardo Oliveira de Bordonal
  • Mara Regina MoitinhoEmail author
  • Daniel De Bortoli Teixeira
  • Newton La ScalaJr.
Article

Abstract

The challenge of agricultural sector is to reduce greenhouse gas (GHG) emissions while increasing food, fiber and energy production without jeopardizing environmental integrity. In the Andean zone of Colombia, there is a growing need to develop GHG mitigation techniques associated with milk production. The present study focuses on GHG emissions and potential sinks associated with milk production scenarios in the Andean zone of Colombia. The scenarios considered were as follows: conventional agriculture of Pennisetum clandestinum in rotation with potatoes (PRP), improved pastures of Lolium multiflorum (IP) and silvopastoral system of P. clandestinum in association with Acacia decurrens and Trifolium repens (SPS). Based on the IPCC (Guidelines for national greenhouse gas inventories. The intergovernmental panel on climate change, Institute for Global Environmental Strategies, Kanagawa, 2006. http://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf) methodologies, the annual GHG emissions considering a 6-year production cycle included agricultural sources and gasoline consumption related to the most important agricultural phases in the field, and a potential for soil carbon accumulation and biomass carbon fixation in all the studied scenarios. The lowest GHG emissions were estimated in PRP scenario (3684 kg CO2-eq ha−1 year−1), which also presented additional emissions because of soil carbon losses beyond the lower milk productivity. Highest GHG emissions were observed in IP scenario (7711 kg CO2-eq ha−1 year−1), which exhibited the highest milk productivity and a considerable potential for soil carbon accumulation that could help to offset its emissions. Nevertheless, SPS scenario, which had milk productivity close to that of IP, presented the highest potential to offset the total GHG emission (4878 kg CO2-eq ha−1 year−1) because of soil carbon accumulation and biomass carbon fixation in trees. This study contributed to indicate management strategies that should be prioritized to mitigate the main sources of GHG emission in the extensive and intensive dairy cattle production in the Andean region of Colombia.

Keywords

Biomass and soil carbon sequestration Milk production Agricultural intensification Climate change GHG mitigation Global warming Grassland Trees 

References

  1. Aguilar, O. X., Moreno, B. M., Pabón, M. L., & Carulla, J. E. (2009). Efecto del consumo de kikuyo (Pennisetum clandestinum) o raigrás (Lolium hibridum) sobre la concentración de ácido linoléico conjugado y el perfil de ácidos grasos de la grasa láctea. Livestock Research for Rural Development, 24, 1–12.Google Scholar
  2. Apraez, J. E., Delgado, J. M., & Narvaez, J. P. (2012). Composición nutricional, degradación in vitro y potencial de producción de gas, de herbáceas, arbóreas y arbustivas encontradas en el trópico alto de Nariño. Livestock Research for Rural Development, 24, 1–10.Google Scholar
  3. Bernal, J. (1994). Algunas características agronómicas de los ryegrass. Banco Ganadero. Pastos y Forrajes para Colombia (3rd ed.). Bogotá: Banco Ganadero.Google Scholar
  4. Boul, H. L., Garnham, M. L., Hucker, D., Baird, D., & Aislabie, J. (1994). Influence of agricultural practices on the levels of DDT and its residues in soil. Environmental Science and Technology, 28, 1397–1402.CrossRefGoogle Scholar
  5. Corazza, E. J., Silva, J. E., Resk, D. V. S., & Gomes, A. C. (1999). Behavior of different management systems as a source or sink of C–CO2 in relation to cerrado type vegetation. Revista Brasileira de Ciência do Solo, 23, 425–432.CrossRefGoogle Scholar
  6. Correa, C. H. J., Pabón, R. M. L. Y., & Carulla, F. J. E. (2008). Valor nutricional del pasto kikuyo (Pennisetum clandestinum Hoechst Ex Chiov.) para la producción de leche en Colombia (Una revisión). Livestock Research for Rural Development, 20, 1–10.Google Scholar
  7. Costa, C., Papatheodorou, E. M., Monokrousos, N., & Stamou, G. P. (2015). Spatial variability of soil organic C, inorganic N and extractable P in a Mediterranean grazed area. Land Degradation and Development, 26, 103–109.CrossRefGoogle Scholar
  8. [FAO] Food and Agriculture Organization. (2010). Grasslands: Enabling their potential to contribute to greenhouse gas mitigation. Rome: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
  9. [FEDEGAN–CIPAV] Federaciòn Nacional de Ganaderos. (2010). Informe del Proyecto: Evaluación Técnica, Económica-Financiera y Ambiental de Sistemas Silvopastorales Intensivos con Leucaena leucocephala y pastos mejorados en el Valle del Río Cesar. Cali: Federaciòn Nacional de Ganaderos.Google Scholar
  10. Figueiredo, E. B., Jayasundara, S., Bordonal, R. O., Berchielli, T. T., Reis, R. A., Wagner-Riddle, C., et al. (2017a). Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, 142, 420–431.CrossRefGoogle Scholar
  11. Figueiredo, E. B., Panosso, A. R., Bordonal, R. O., Teixeira, D. D. B., Berchielli, T. T., & La Scala, N., Jr. (2017b). Soil CO2–C emissions and correlations with soil properties in degraded and managed pastures in Southern Brazil. Land Degradation & Development, 28, 1263–1273.CrossRefGoogle Scholar
  12. Giraldo, V., & Bolivar, G. (2004). Evaluación de un sistema silvopastoril de Acacia decurrens asociada con pasto kikuyo Pennisetum clandestinum, en clima frío de Colombia. Bogotá: Conservación de la naturaleza y recursos de la tierra.Google Scholar
  13. Giraldo, A., Zapata, M., & Montoya, E. (2008). Captura y flujo de carbono en un sistema silvopastoral de la zona andina Colombiana. Archivos Latinoamericanos de Producción Animal, 16, 241–245.Google Scholar
  14. Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGiin, S. M., Waghorn, G. C., et al. (2009). Mitigation of greenhouse gas emissions from dairy cows fed pasture and grain through supplementation with Acacia mearnsii tannins. Canadian Journal of Forest Research, 89, 241–251.Google Scholar
  15. Guerrero, R. (1998). Fertilización de cultivos en clima frio. Bogotá: Sáenz y Cía. Ltda.Google Scholar
  16. Hassan, J.A. (2011). El ciclo de vida en la producción de leche y la dinámica de las emisiones de gases de efecto invernadero en fincas doble propósito de la península de Azuero. Doctoral Thesis, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba.Google Scholar
  17. Helsel, Z. R. (1992). Energy and alternatives for fertilizer and pesticide use. In R. C. Fluck (Ed.), Energy in farm production (pp. 177–201). Amsterdam: Elsevier.CrossRefGoogle Scholar
  18. Hess, H., Monsalve, L., Carulla, J., Lascano, C., Díaz, T., Kreuzer, M. (2002). In vitro evaluation of the effect of Sapindus saponaria on methane release and microbial populations (1.4.1). <http://www.ciat.cgiar.org/forrajes/pdf/output1_2002.pdf>. Acess: 13 January 2015.
  19. [IPCC] Intergovernmental Panel on Climate Change. (2006). Guidelines for national greenhouse gas inventories. The intergovernmental panel on climate change. Institute for Global Environmental Strategies, Kanagawa. <http://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf>. Access: 24 March 2014.
  20. [IPCC] Intergovernmental Panel on Climate Change. (2007). Climate change. The physical science basis, contribution of working group I to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press, Cambridge. <http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm>. Access: 20 April 2014.
  21. Köppen, W. (1948). Climatologia: Con um estúdio de los climas de la Tierra. Pánuco: Fondo de Cultura Economica.Google Scholar
  22. La Scala, N., Bolonhezi, D., & Pereira, G. T. (2006). Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil and Tillage Research, 91, 244–248.CrossRefGoogle Scholar
  23. La Scala, N. Jr., De Figueiredo, E. B., & Panosso, A. R. (2012). On the mitigation potential associated with atmospheric CO2 sequestration and soil carbon accumulation in major Brazilian agricultural activities. Brazilian Journal of Biology, 72, 775–785.Google Scholar
  24. Lal, R. (2004). soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22.CrossRefGoogle Scholar
  25. McGrath, J. A., Penno, J. W., Macdonald, K. A., & Carter, W. A. (1998). Using nitrogen fertilizer to increase dairy farm profitability. Proceedings-New Zealand Society of Animal Production, 58, 117–120.Google Scholar
  26. Medina, M., Orozco, H., & Diaz, M. C. (2008). Establecimiento de un Sistema Silvopastoril mediante las especies Alnus acuminata H.B.K. y Acacia decurrens Willd y respuesta al empleo de organismos rizósfericos en San Pedro (Antioquia). Livestock Research for Rural Development, 20, 1–9.Google Scholar
  27. Naranjo, J. F., Cuartas, C. A., Murgueitio, E., Chará, J., & Barahona, R. (2012). Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livestock Research for Rural Development, 24, 1–12.Google Scholar
  28. Noreña, J. M. (2011). Rehabilitación de praderas de kikuyo Pennisetum clandestinum con equipos de labranza vertical. Medellín: Colanta Pecuaria.Google Scholar
  29. Oenema, O., Velthof, G. L., Yamulki, S., & Jarvis, S. C. (1997). Nitrous oxide emissions from grazed grassland. Soil use and Management, 13, 288–295.CrossRefGoogle Scholar
  30. Papanastasis, V. P., Bautista, S., Chouvardas, D., Mantzanas, K., Papadimitriou, M., Mayor, A. G., et al. (2015). Comparative assessment of goods and services provided by grazing regulation and reforestation in degraded Mediterranean Rangelands. Land Degradation & Development, 28, 1178–1187.CrossRefGoogle Scholar
  31. Primavesi, O., Pedreira, M. S., Friguetto, R. T. S., Lima, M. A., Berchielli, T. T., Oliveira, S. G., et al. (2004). Manejo alimentar de bovinos leiteiros e sua relação com produção de metano ruminal. São Carlos: Embrapa Pecuária Sudeste.Google Scholar
  32. Robertson, G. P., Paul, E. A., & Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: Contributions individual gases to the radiative forcing of atmosphere. Science, 289, 1922–1925.CrossRefGoogle Scholar
  33. Saggar, S., Giltrap, D. L., Li, C., & Tate, K. R. (2007). Modelling nitrous oxide emissions from grazed grasslands in New Zealand. Agriculture, Ecosystems & Environment, 119, 205–216.CrossRefGoogle Scholar
  34. Sanchez, L., & Villaneda, E. (2009). Renovación y manejo de praderas en sistemas de producción de leche especializada en el trópico alto colombiano. Bogotá: Corpoica, Colciencias.Google Scholar
  35. Silva, A., Menjivar, J., Alava, C., Gomez, H. (2010). Efecto de la fertilización con N, P y S sobre una pradera degradada de pasto kikuyo Pennisetum clandestinum Hoestch en Nariño, Colombia. In Proceedings of the XII International Congreso Ecuatoriano de La Ciencia del Suelo, Equador (pp. 1–10).Google Scholar
  36. Silva, J. E., Resck, D. V. S., Corazza, E. J., & Vivaldi, L. (2004). Carbon storage in clayey Oxisol cultivated pastures in the “Cerrado” region, Brazil. Agriculture, Ecosystems & Environment, 103, 357–363.CrossRefGoogle Scholar
  37. Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N. H., Rice, C. W., Robledo Abad, C., Romanovskaya, A., Sperling, F., & Tubiello, F. (2014). Agriculture, forestry and other land use (AFOLU). In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (Eds.), Climate change 2014: Mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  38. Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., et al. (2015). Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, 1, 665–685.CrossRefGoogle Scholar
  39. Smith, K. A., Taggart, I. P., & Tsuruta, H. (1997). Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use and Management, 13, 297–304.Google Scholar
  40. Solarte, C., Martínez, A., & Burgos, W. (2006). El TLC con estados unidos: efectos y retos para la cadena láctea de Nariño. Tendencias, 7, 101–120.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Amanda Silva Parra
    • 1
  • Eduardo Barretto de Figueiredo
    • 2
  • Ricardo Oliveira de Bordonal
    • 3
  • Mara Regina Moitinho
    • 1
    Email author
  • Daniel De Bortoli Teixeira
    • 1
  • Newton La ScalaJr.
    • 1
  1. 1.Department of Exact Sciences, College of Agricultural and Veterinarian SciencesSão Paulo State University, FCAV/UNESP)JaboticabalBrazil
  2. 2.Department of Rural Development, Centro do Ciências AgráriasFederal University of São Carlos (UFSCar)ArarasBrazil
  3. 3.Brazilian Bioethanol Science and Technology Laboratory/Brazilian Center for Research in Energy and Materials (CTBE/CNPEM)CampinasBrazil

Personalised recommendations