Quantifying climate change induced threats to wetland fisheries: a stakeholder-driven approach

  • Malay Naskar
  • Koushik Roy
  • Gunjan Karnatak
  • Saurav Kumar Nandy
  • Aparna Roy
Article

Abstract

Wetlands are biologically sensitive habitats and envisaged as the most impacted systems by climate change. Floodplain wetlands of West Bengal, India, are important fisheries resources and provide tremendous economic and ecological services. There is lack of long-term quantified data to assess the impacts of climate change on floodplain wetlands fisheries in India. The article presents a stakeholder-driven approach to quantify the impacts of climate change on wetland fisheries. A modified Delphi method has been used to accomplish this. The present article discusses the modified methodology and the results obtained thereof. The study identified around seven potential climate change-induced threats on wetland fisheries among which water stress (95% consensus), wetland accretion/sedimentation (85%), aquatic weed proliferation (70%) and loss of wetland connectivity (65%) are high-priority issues demanding immediate management action. These issues are expected to further aggravate in future climatic scenario.

Keywords

Perception Climate change Floodplain wetlands Fisheries Delphi method 

References

  1. Adeleke, M. L., Amos, T. T. & Fagbenr, O. A (2012) African catfish farmers’ perception on climate change and contribution of catfish production to household income on Lagos State, Nigeria. IIFET 2012 Tanzanian Proceedings, P1.Google Scholar
  2. Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268–281. doi:10.1016/j.gloenvcha.2006.02.006.CrossRefGoogle Scholar
  3. Allison, E. H., Adger, N. W., Badjeck, M. C, Brown, K., Conway D, Dulvy, N. K et al. (2005) Effects of climate change on the sustainability of capture and enhancement fisheries important to the poor: Analysis of the vulnerability and adaptability of fisher folk living in poverty, DFID Project No. R4778J.Google Scholar
  4. Allison, E. H., Andrew, N. L., & Oliver, J. (2007). Enhancing the resilience of inland fisheries and aquaculture systems to climate change. SAT eJournal. http://ejournal.icrisat.org.
  5. Badjeck, M. C., Allison, E. H., Halls, A. S., & Dulvy, N. K. (2010). Impacts of climate variability and change on fisherybased livelihoods. Marine Policy, 34, 375–383.CrossRefGoogle Scholar
  6. Bowes, G., & Salvucci, M. E. (1989). Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquatic Botany, 34, 233–266.CrossRefGoogle Scholar
  7. Brock, T. C. M., & Vierssen, W. V. (1992). Climatic change and hydrophyte-dominated communities in inland wetland ecosystems. Wetlands Ecology and Management, 2, 37–49.CrossRefGoogle Scholar
  8. Callaway, J. C., Borgnis, E. L., Turner, R. E., & Milan, C. S. (2012). Carbon sequestration and sediment accretion in San Francisco Bay Tidal wetlands. Estuaries and Coasts, 35, 1163–1181. doi:10.1007/s12237-012-9508-9.CrossRefGoogle Scholar
  9. Christensen, J. H., Hewitson, B., Busuioc, A., et al. (2007). Regional climate projections. In S. Solomon, D. Qin, M. Manning, et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 849–940). New York: Cambridge University Press.Google Scholar
  10. CIFRI (2000) Ecology and fisheries of Beels in West Bengal. Bulletin No. 103. CIFRI publication, Barrackpore. http://www.ernet.cifri.in.
  11. CIFRI (2016) Annual Report (2015-16). ICAR-Central Inland Fisheries Research Institute, Barrackpore. http://www.ernet.cifri.in.
  12. Close, P. G., Dobbs, R. & Davies, P. (2012) Summary Report—Assessment of the likely impacts of development and climate change on aquatic ecological assets in Northern Australia. A report for the National Water Commission, Australia. Tropical Rivers and Coastal Knowledge (TRaCK) Commonwealth Environmental Research Facility, Charles Darwin University, Darwin.Google Scholar
  13. Cochrane, K., De Young, C., Soto, D. & Bahri, T. (2009) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. Fisheries and Aquaculture Technical Paper No. 530. Rome, FAO. pp. 212.Google Scholar
  14. Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of participants. Management Science, 9(3), 458–467.CrossRefGoogle Scholar
  15. Das, M. K., Srivastava, P. K., Rej, A., Mandal, M. L., & Sharma, A. P. (2016). A framework for assessing vulnerability of inland fisheries to impacts of climate variability in India. Mitigation and Adaptation Strategies for Global Change, 21(2), 279–296. doi:10.1007/s11027-014-9599-7.CrossRefGoogle Scholar
  16. Day, J. W., Christian, R. R., Boesch, D. M., et al. (2008). Consequences of climate change on the ecogeomorphology of Coastal wetlands. Estuaries and Coasts, 31, 477–491. doi:10.1007/s12237-008-9047-6.CrossRefGoogle Scholar
  17. Debusk, T. A., Ryther, J. H., & Williams, L. D. (1983). Evapo-transpiration of Eichhornia crassipes (Mart) Solms and Lemna minor L in Central Florida–Relation to canopy structure and season. Aquatic Botany, 16, 31–39.CrossRefGoogle Scholar
  18. Dhanya, P., & Ramachandran, A. (2015). Farmer’s perceptions of climate change and the proposed agriculture adaptation strategies in a semi arid region of south India. Journal of Integrative Environmental Sciences, 13(1), 1–18. doi:10.1080/1943815X.2015.1062031.Google Scholar
  19. Diogo, H., Pereira, J. G., & Schmiing, M. (2017). Experience counts: Integrating spear fisher’s skills and knowledge in the evaluation of biological and ecological impacts. Fisheries Management and Ecology, 24(2), 95–102. doi:10.1111/fme.12206.CrossRefGoogle Scholar
  20. DoF West Bengal. (2016). Handbook of fisheries statistics. Salt Lake city: Department of fisheries, Government of West Bengal, Meen Bhavan.Google Scholar
  21. Dudley, N., Stolton, S., Belokurov, A., Krueger, L., Lopoukhine, N., MacKinnon K et al. (2010) Natural solutions: Protected areas helping people cope with climate change, In: Joint report for IUCN-WCPA, TNC, UNDP, WCS, The World Bank and WWF. New York.Google Scholar
  22. Dukes, J. S. (2000). Will the increasing atmospheric CO2 concentration affect the success of invasive species? In H. A. Mooney & R. J. Hobbs (Eds.), Invasive species in a changing world. Washington, DC: Island Press.Google Scholar
  23. Ficke, A. D., Myrick, C. A., & Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581–613. doi:10.1007/s11160-007-9059-5.CrossRefGoogle Scholar
  24. Handisyde, N. T., Ross, L. G., Badjeck, M. C. & Allison, E. H. (2014) The effects of climate change on world aquaculture: A global perspective. Final technical report, DFID Aquaculture and fish genetics research programme. Stirling Institute of Aquaculture, Stirling, p. 151. www.aqua.stir.ac.uk/GISAP/pdfs/Climate_full.pdf.
  25. Hessami, M., Gachon, P., Ouarda, T., & St-Hilaire, A. (2008). Automated regression-based statistical downscaling tool. Environmental Modelling and Software, 23, 813–834.CrossRefGoogle Scholar
  26. Hossain, M. A. R. (2014) Habitat and fish diversity: Bangladesh perspective, pp 1–26. In: Wahab, M.A., Shah, M.S., Hossain, M.A.R., Barman, B.K. and Hoq, M.E. (eds.), Advances in Fisheries Research in Bangladesh: I. Proc. of 5th fisheries conference and research fair 2012. 18–19 January 2012, Bangladesh agricultural research council, Dhaka, Bangladesh Fisheries Research Forum, Dhaka. p. 246.Google Scholar
  27. Hossain, M. N. (2015). Analysis of human vulnerability to cyclones and storm surges based on influencing physical and socioeconomic factors: Evidences from coastal Bangladesh. International Journal of Disaster Risk Reduction, 13, 66–75. doi:10.1016/j.ijdrr.2015.04.003.CrossRefGoogle Scholar
  28. Hossain, M. N., Chowdhury, S., & Paul, S. K. (2016). Farmer level adaptation to climate change and agricultural drought: empirical evidences from the Barind region of Bangladesh. Natural Hazards, 83, 1007–1026. doi:10.1007/s11069-016-2360-7.CrossRefGoogle Scholar
  29. Hussner, A. (2009). Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Research, 49, 506–515. doi:10.1111/j.1365-3180.2009.00721.x.CrossRefGoogle Scholar
  30. IPCC (2014) Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Pachauri, R. K. & Meyer L. A. (eds.). IPCC, Geneva, Switzerland, pp. 151.Google Scholar
  31. IWAC. (2009). Climate change mitigation and adaptation—implications for inland waterways in England and Wales. U.K.: IWAC.Google Scholar
  32. Kairu, J. K. (2001). Wetland use and impact on Lake Victoria, Kenya region. Lakes and Reservoirs: Research and Management, 6, 117–125.CrossRefGoogle Scholar
  33. Kam, S. P., Badjeck, M. C., The, L. &Tran N. (2012) Autonomous adaptation to climate change by shrimp and catfish farmers in Vetnam’s Mekong River delta. World Fish Center, Working Paper, 24.Google Scholar
  34. Kassenga, G. R. (1997). A descriptive assessment of the wetlands of the Lake Victoria basin in Tanzania. Resources, Conservation and Recycling, 20, 127–141.CrossRefGoogle Scholar
  35. Kolker, A. S., Kirwan, M. L., Goodbred, S. L., & Cochran, J. K. (2010). Global climate changes recorded in coastal wetland sediments: Empirical observations linked to theoretical predictions. Geophysical Research Letters, 37, L14706. doi:10.1029/2010GL043874.CrossRefGoogle Scholar
  36. Kumaran, M., Vimala, D. D., Chandrasekaran, V. S., Algappan, M., & Raja, S. (2012). Extension approach for an effective fisheries and aquaculture extension service in India. Journal of Agricultural Extension and Extension, 18(3), 247–267.CrossRefGoogle Scholar
  37. Kusler, J. (2005). Common questions: Wetland, climate change and carbon sequestering. USA: ASWM.Google Scholar
  38. Lallana, V. H., Sebastian, R. A., & Lallana, M. D. C. (1987). Evapotranspiration from Eichhornia crassipes, Pistia stratiotes, Salvinia herzogii and Azolla caroliniana during summer in Argentina. Journal of Aquatic Plant Management, 25, 48–50.Google Scholar
  39. Leiserowitz, A. (2006). Climate change risk perception and policy preferences: The role of affect, imagery and values. Climate Change, 77(1), 45–72.CrossRefGoogle Scholar
  40. Linstone, H. A., & Turoff, M. (1975). The Delphi method: Techniques and applications. Reading: Addison-Wesley. ISBN 978-0-201-04294-8.Google Scholar
  41. Lonsdale, W. M. (1993). Rates of spread of an invading species—Mimosa pigra in northern Australia. Journal of Ecology, 81(3), 513–521.CrossRefGoogle Scholar
  42. Low, T. (2012). Climate change, weeds and pests in Murray-Darling basin: Report for the Murray-Darling basin authority. Australia: Murray-Darling basin authority.Google Scholar
  43. Lukasiewicz, A., Finlayson, C. M., Pittock, J. (2012) Identifying low risk climate change adaptation: A case study of the Goulburn Catchment Management Authority. Goulburn Catchment Management Authority Report No. 72.Google Scholar
  44. Makate, C., Makate, M., & Mango, N. (2017). Smallholder Farmer’s perceptions on climate change and the use of sustainable agricultural practices in the Chinyanja triangle, Southern Africa. Social Science, 6(1), 30. doi:10.3390/socsci6010030.CrossRefGoogle Scholar
  45. Malone, E. L., & Engle, N. L. (2011). Evaluating regional vulnerability to climate change: purposes and methods. WIREs Climate Change, 2, 462–474. doi:10.1002/wcc.116.CrossRefGoogle Scholar
  46. Mamun, A. A. (2007) Traditional ecological knowledge and its importance for conservation and management of freshwater fish habitats of Bangladesh. M.Sc. (Natural Resource Management) Thesis, The University of Manitoba, Canada.Google Scholar
  47. Marcogliese, D. J. (2008). The impact of climate change on the parasites and infectious diseases of aquatic animals. Revue Scientifique et Technique, 27(2), 467–484.CrossRefGoogle Scholar
  48. McCormick, S. (2016). Assessing climate change vulnerability in urban America: stakeholder-driven approaches. Climatic Change, 138(3–4), 397–410.CrossRefGoogle Scholar
  49. Milton, S. J. (2004). Grasses as invasive alien plants in South Africa. South African Journal of Science, 100, 69–75.Google Scholar
  50. Mohanty, B., Mohanty, S., Sahoo, J., & Sharma, A. (2010). Climate change: Impacts on fisheries and aquaculture. In S. Simard (Ed.), Climate change and variability. InTech Europe. http://www.intechopen.com/books/climate-change-and-variability/climate-change-impacts-on-fisheries-and-aquaculture.
  51. Mukherjee, N., Huge, J., Sutherland, W. J., McNeill, J., Opstal, M. V., Dahdouh-Guebas, F., et al. (2015). The Delphi technique in ecology and biological conservation: applications and guidelines. Methods in Ecology and Evolution, 6(9), 1097–1109. doi:10.1111/2041-210X.12387.CrossRefGoogle Scholar
  52. NATCOM-UNFCCC (2004) India’s national communication to the United Nations framework convention on climate change. Ministry of environment and forests, Government of India.Google Scholar
  53. Ndimele, P., Kumolu-Johnson, C., & Anetekhai, M. (2011). The invasive aquatic macrophyte, water hyacinth Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae: Problems and prospects. Research Journal of Environmental Sciences, 5, 509–520.CrossRefGoogle Scholar
  54. Ojala, A., Kankaala, P., & Tulonen, T. (2002). Growth response of Equisetum fluviatile to elevated CO2 and temperature. Environmental and Experimental Botany, 47(2), 157–171.CrossRefGoogle Scholar
  55. Pathak, V., Tyagi, R. K. & Singh, B. (2014) Ecological status and production dynamics of wetlands of Uttar Pradesh. Bulletin No.131. Central Inland Capture Fisheries Institute, Barrackpore. p. 44.Google Scholar
  56. Pittock, J., & Finlayson, M. (2011). Australia’s Murray-Darling Basin: Freshwater ecosystem conservation options in an era of climate change. Marine and Freshwater Research, 62, 232–243. doi:10.1071/MF02041.CrossRefGoogle Scholar
  57. Ponnusamy, K., & Swatilakshmi, P. S. (2012). Farmers’ perception of critical factors for success of indigenous shrimp feed in India. Fishery Technology, 48(1), 95–98.Google Scholar
  58. Powell, C. (2003). The Delphi technique: myths and realities. J Adv Nurs., 41(4), 376–382.CrossRefGoogle Scholar
  59. Pramova E, Florie C, Locatelli B & Hoppe M (2013) Climate change impact chains in Coastal Areas (ICCA). Final study report, 57.Google Scholar
  60. Ramsar Convention Secretariat. (2013). The Ramsar convention manual: A guide to the convention on wetlands (Ramsar, Iran, 1971) (6th ed.). Gland: Ramsar Convention Secretariat.Google Scholar
  61. Roderick, M. R. (2012). Farmer perceptions and beliefs about climate change: A North Carolina Perspective. Raleigh, North Carolina: NC State Economist.Google Scholar
  62. Roldan, G., & Ruiz, E. (2001). Development of limnology in Colombia. In R. G. Wetzel & B. Gopal (Eds.), Limnology in developing Countries. III. International association of theoretical and applied limnology (pp. 69–119). New Delhi: International Scientific Publications.Google Scholar
  63. Ross, P. M., & Adam, P. (2013). Climate change and intertidal wetlands. Biology (Basel), 2(1), 445–480. doi:10.3390/biology2010445.Google Scholar
  64. Roy, K. (2016). Secondary impacts of climate change on floodplain wetlands and their fisheries: A review with one hypothesis. National Wetlands Newsletter, 38(1), 21–25.Google Scholar
  65. Saha, G. S., Radheyshyam, H. K., De, H. K., Kumar, K., Chakraborty, P. P., Mahapatra, A. S., et al. (2015). Perceptions of the farmers and fishery extension officers on climate change parameters affecting aquaculture. Journal of Inland Fisheries Society of India., 47(2), 6–12.Google Scholar
  66. Sharma, A. P, Joshi, K. D., Naskar, M. & Das, M. K. (2015) Inland fisheries and climate change: Vulnerability and adaptation options. ICAR-CIFRI Special Publication, Policy paper No. 5. ISSN 0970-616X. http://www.ernet.cifri.in.
  67. Sugunan, V. V., Vinci, G. K., Bhattacharjya, B. K. & Hassan, M. A. (2000) Ecology and fisheries of beels in West Bengal. Bulletin No. 103, Central Inland Capture Fisheries Institute, Barrackpore. p. 53.Google Scholar
  68. Thorp, J. H., Thoms, M. C., & Delong, M. D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications, 22, 123–147.CrossRefGoogle Scholar
  69. Tonn, W. M. (1990). Climate change and fish communities: A conceptual framework. Transactions of the American Fisheries Society, 119, 337–352.CrossRefGoogle Scholar
  70. Tsai, J. S., Venne, L. S., McMurry, S. T., & Smith, L. M. (2007). Influences of land use and wetland characteristics on water loss rates and hydroperiods of playas in the southern high plains. Wetlands, 27, 683–692.CrossRefGoogle Scholar
  71. Udayasekhar, N., Muralidhar, M., Kumaran, M., Muniyandi, B., Umesh, N. R., Krishna, P. K. S., et al. (2012). Climate change and shrimp farming in Andhra Pradesh, India: Socio-economics and vulnerability. Energy and Environment Research., 2(2), 137–148.Google Scholar
  72. Uddin, M. S., Bokelmann, W., & Entsminger, J. S. (2014). Factors affecting farmer’s adaptation strategies to environmental degradation and climate change effects: A farm level study in Bangladesh. Climate, 2, 223–241. doi:10.3390/cli2040223.CrossRefGoogle Scholar
  73. US EPA (2008) Effects of climate change for aquatic invasive species and implications for management and research. National Center for Environmental Assessment, Washington, DC; EPA/600/R-08/014. Available from the National Technical Information Service, Springfield. http://www.epa.gov/ncea.
  74. Wandji, N. D., Pouomogne, V., Nymeck, B. J., & Nouaga, R. Y. (2012). Farmer’s perception and adoption of new aquaculture technologies in the western highlands of cameroon. Tropiculturia, 30(3), 180–184.Google Scholar
  75. Weber, E. U. (2006). Experience based and description based perceptions of long term risk: why global does not scare us (yet). Climate Change, 77(1), 103–120.CrossRefGoogle Scholar
  76. Weber, E. U. (2010). What shapes perception of climate change? Climate Change, 1, 332–342.Google Scholar
  77. Wrona, F. J., Prowse, T. D., Reist, J. D., Hobbie, J. E., Levesque, L. M. J., Macdonald, R. W., et al. (2006). Effects of ultraviolet radiation and contaminant-related stressors on Arctic freshwater ecosystems. Ambio, 35, 388–401.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.ICAR-Central Inland Fisheries Research InstituteBarrackporeIndia

Personalised recommendations