Skip to main content

Advertisement

Log in

Ecological and economic impacts of different irrigation and fertilization practices: case study of a watershed in the southern Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Best management practices, such as conservation tillage, the optimum level of irrigation, fertilization, are frequently used to reduce non-point source pollution from agricultural land and improve water quality. In this study, we used the soil and water assessment tool to model the impacts of different irrigation (adjusted to crop need), cropping and fertilization practices on total nitrogen loss. The economic impacts of these practices on crop net farm income were also evaluated. For this purpose, the model was calibrated through comparing model outputs with observations to ensure reliable hydrologic, crop yield and nitrate leaching simulations. The results showed that by reducing water or fertilizer or combination of both, we can reduce nitrate leaching. For wheat and corn, the best scenario was S1n1 (combination between reduction by 10 % of water and nitrogen fertilizer application, simultaneously) and S2n3 (combination of 20 and 30 % reduction in water and fertilizer application), respectively. These scenarios are both ecologically and economically desirable. Also, decreasing nitrogen fertilization by 50 % for corn would decrease the nitrate pollution from 101.1 to 32.3 kg N ha−1; therefore, this strategy is ecologically desirable but economically unsound. So, there are opportunities for environmental decision makers to encourage farmers to implement these strategies. Also, since the nitrogen leaching cannot decrease without a reduction in net farm income for crops such as corn; hence, the losses of farmers should be compensated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Environmental Costing Model.

  2. Sequential Uncertainty Fitting, ver. 2.

  3. SWAT Calibration Uncertainty Procedures.

  4. Generalized Likelihood Uncertainty Estimation.

  5. Parameter Solution.

  6. Monte Carlo Markov Chain.

References

  • Aarts, H. F. M., Habekotte, B., & Van Keulen, H. (2000). Ground water recharge through optimized intensive dairy farms. Journal of Environmental Quality, 29, 738–743.

    Article  CAS  Google Scholar 

  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., et al. (2007). Modelling hydrology and water quality in the prealpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430.

    Article  Google Scholar 

  • Ahmadzadeh, H., Morid, S., Delavar, M., & Srincasan, R. (2015). Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Journal of Agricultural Water Management, 175, 15–28.

    Article  Google Scholar 

  • Akhavan, S., Abedi-Koupai, J., Mousavi, S. F., Afyuni, M., Eslamian, S. S., & Abbaspour, K. C. (2010). Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed, Iran. Journal of Agriculture, Ecosystems and Environment, 139, 675–688.

    Article  CAS  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modelling and assessment part I: model development. Journal of American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  • Behrendt, H., Ley, M., Korol, R., Stronska-Kedzia, M., & Pagenkopf, W. (1999). Point and diffuse nutrient emissions and transports in the Odra Basin and its main tributaries. Acta hydrochimica et hydrobiologica, 27, 274–281.

    Article  CAS  Google Scholar 

  • Beven, K., & Binley, A. (1992). The future of distributed models—model calibration and uncertainty prediction. Hydrological Processes, 6, 279–298.

    Article  Google Scholar 

  • Bossa, A. Y., Diekkrüger, B., Igué, A. M., & Gaiser, T. (2012). Analyzing the effects of different soil databases on modelling of hydrological processes and sediment yield. Geoderma, 173–174, 61–74.

    Article  Google Scholar 

  • Bouraoui, F., & Grizzetti, B. (2008). An integrated modelling framework to estimate the fate of nutrients: Application to the Loire (France). Ecological Modelling, 212, 450–459.

    Article  Google Scholar 

  • Conijn, J. G., & Henstra, P. 2003. Effecten van bemestingsstrategiee¨n op grasopbrengsten en stikstofverliezen onder gemaaid grasland. Een simulatiestudie. Rapport 66. Plant Research International, Wageningen, The Netherlands, 48 pp (in Dutch).

  • Cools, J., Broekx, S., Vandenberghe, V., Sels, H., Meynaerts, E., Vercaemst, P., et al. (2011). Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environmental Modelling and Software, 26, 44–51.

    Article  Google Scholar 

  • Daroub, S. H., Van Horn, S., Lang, T. A., & Diaz, O. A. (2011). Best management practices and long-term water quality trends in the everglades agricultural area. Critical Reviews in Environmental Science and Technology, 41(1), 608–632.

    Article  CAS  Google Scholar 

  • Faramarzi, M., Abbaspour, K. C., Schulin, R., & Yang, H. (2009). Modelling blue and green water resources availability in Iran. Hydrological Processes, 23, 486–501.

    Article  Google Scholar 

  • Fohrer, N., Haverkamp, S., & Frede, H. G. (2005). Assessment of the effects of land-use patterns on hydrologic landscape functions: Development of sustainable land-use concepts for low mountain range areas. Hydrological Processes, 19, 659–672.

    Article  Google Scholar 

  • Holvoet, K., van Griensven, A., Seuntjens, P., & Vanrolleghem, P. A. (2005). Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, 30, 518–526.

    Article  Google Scholar 

  • Inamdar, S. P., Mostaghimi, S., McClellan, P. W., & Brannan, K. M. (2001). BMP impacts on sediment and nutrient yields from an agricultural watershed in the coastal plain region. Transactions of the American Society of Agricultural Engineering, 44(5), 1191–1200.

    Article  CAS  Google Scholar 

  • Lam, Q. D., Schmalz, B., & Fohrer, N. (2011). The impact of agricultural best management practices on water quality in a North German lowland catchment. Environmental Monitoring Assessment, 183, 351–379.

    Article  CAS  Google Scholar 

  • Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H. G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9), 645–654.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural Engineering, 50(3), 885–900.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. 2005. Soil and water assessment tool. In: Theoretical documentation: Version 2005. TWRI TR-191, College Station, TX.

  • Nguyen, T. T., Ruidisch, M., Koellner, T., & Tenhunen, J. (2014). Synergies and tradeoffs between nitrate leaching and net farm income: The case of nitrogen best management practices in South Korea. Agriculture, Ecosystems & Environment, 186, 160–169.

    Article  CAS  Google Scholar 

  • Nie, X. H., Huang, G. H., Wang, D., & Li, H. L. (2008). Robust optimization for inexact water quality management under uncertainty. Civil Engineering and Environmental Systems, 25(2), 167–184.

    Article  Google Scholar 

  • Ramanarayanan, T. S., Williams, J. R., Duglas, W. A., Hauck, L. M., & McFarland, A. M. S. 1997. Using APEX to identify alternative practices for animal waste management, ASAE International Meeting, Minneapolis, MN. Paper No. 97-2209.

  • Rostamian, R., Jaleh, A., Afyuni, M., Mousavi, S. F., Heidarpour, M., Jalalian, A., et al. (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Science Journal, 53(5), 977–988.

    Article  Google Scholar 

  • Ruget, F., Brisson, N., Delecolle, R., & Faiver, R. (2002). Sensitivity analysis of a crop simulation model, STICS, in order to choose the main parameters to be estimated. Agronomie, 22, 133–158.

    Article  Google Scholar 

  • Santhi, C., Arnold, J., Williams, J., Hauck, L., & Dugas, W. (2001). Application of a watershed model to evaluate management effects on point and non-point source pollution. Transactions of the American Society of Agricultural Engineering, 44, 1559–1570.

    Article  Google Scholar 

  • Schuol, J., Abbaspour, K. C., Sarinivasan, R., & Yang, H. (2008a). Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrological, 352, 30–42.

    Article  Google Scholar 

  • Schuol, J., Abbaspour, K. C., Yang, H., Srinivasan, R., & Zehnder, A. J. B. (2008b). Modelling blue and green water availability in Africa. Water Resources Research, 44, 1–18.

    Article  Google Scholar 

  • Smukler, S. M., O’Geen, A. T., & Jackson, L. E. (2012). Assessment of best management practices for nutrient cycling: A case study on an organic farm in a Mediterranean-type climate. Journal of Soil and Water Conservation, 67(1), 16–31.

    Article  Google Scholar 

  • Sun, C., & Ren, L. (2014). Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model. Journal of Hydrological Processes, 28, 2478–2498.

    Article  Google Scholar 

  • Tuppad, P., Kannan, N., Srinivasan, R., Rossi, C. G., & Arnold, J. G. (2010). Simulation of agricultural management alternatives for watershed protection. Water Resources Management, 24, 3115–3144.

    Article  Google Scholar 

  • Vagstad, N., French, H. K., Andersen, H. E., Behrendt, H., Grizzetti, B., Groenendijk, P., et al. (2009). Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices. Journal of Environmental Monitoring, 11, 594–601.

    Article  CAS  Google Scholar 

  • Van Griensven, A., & Meixner, T. (2006). Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science and Technology, 53, 51–59.

    Article  Google Scholar 

  • Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resource Research, 39(8), 1–18.

    Google Scholar 

  • Wang, X., Williams, J. R., Izaurralde, R. C., & Atwood, J. D. (2005). Sensitivity and uncertainty analysis of crop yields and soil organic carbon simulated with EPIC. Transactions of the ASAE, 48, 1041–1054.

    Article  CAS  Google Scholar 

  • White, K. L., & Chaubey, I. (2005). Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. Journal of the American Water Resources Association, 41, 1077–1089.

    Article  CAS  Google Scholar 

  • Xu, Z. X., Pang, J. P., Liu, C. M., & Li, J. Y. (2009). Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrological Processes, 23, 3619–3630.

    Article  Google Scholar 

  • Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., & Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China. Journal of Hydrological, 358, 1–23.

    Article  Google Scholar 

  • Ziaei, A., & Sepaskhah, A. R. (2003). Model for simulation of winter wheat yield under dry land and irrigated conditions. Agricultural Water Management, 58, 1–17.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Faramarzi and K. Abbaspour from Swiss Federal Institute of Aquatic Science and Technology (Eawag) for providing assistance to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoulkarim Esmaeili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhzeinoddin, A., Esmaeili, A. Ecological and economic impacts of different irrigation and fertilization practices: case study of a watershed in the southern Iran. Environ Dev Sustain 19, 2499–2515 (2017). https://doi.org/10.1007/s10668-016-9868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9868-6

Keywords

Navigation