Environment, Development and Sustainability

, Volume 15, Issue 4, pp 999–1036 | Cite as

Animal production in a sustainable agriculture

  • Stefan Hellstrand


This paper discusses the role of animal production systems in a sustainable society; sustainability problems within animal production systems; and four measures for the improvement of the contribution to societal sustainability from animal production. Substantial potentials for improvements are identified that were not previously known. The methodological basis is multi-criteria multi-level analysis within integrated assessment where elements in Impredicative Loop Analysis are integrated with management tools in Swedish agriculture and forestry developed during thousands of years, during which the well-being of the Swedish society and its economic and military power were functions of the land-use skill. The issue—the sustainability footprint of global animal production—is complex and available data are limited. The Swedish case is used as a starting point for an analysis of international relevance. Data from FAO and OECD support the relevance of extrapolating results from the Swedish case to level. The four measures are (i) decrease the consumption of chicken meat in developed nations with 2.6 kg per capita and year; (ii) develop the capacity of ruminants to produce high-quality food from otherwise marginal agroecosystems; (iii) improve milk production per cow with a factor four on global level; and (iv) increase feeding efficiency in milk production globally would substantially improve the societal contribution in terms of increased food supply and decreased pressure on land. The impact of measures (i), (iii) and (iv) on increased global food security was estimated to in total 1.8 billion people in terms of protein supply and a decreased pressure on agricultural land of 217 million ha, of which 41 relate to tropical forests. The 41 million ha of tropical land are due to a decreased demand on soymeal, where this represents more than a halving of total area now used for the production of soymeal. These impacts are of the character either or. The quality of the measures is as first-time estimates, supporting choices of where to direct further efforts in analysis. Two areas were identified as critical for achieving this potential: Feeding strategies to dairy cows as well as methods commonly used to evaluate the sustainability contribution of animal production needs adjustment, so that they comply with the “laws” of diminishing returns, Liebig’s “law” of the minimum and Shelford’s “law” of tolerance, that is, in agreement with well-known principles for efficient natural resource management and the priorities of UN Millennium Development Goals. If not, global food security is at risk.


Agroecosystems Integrative assessment Animal production Sustainable animal production Food security Climate change 



Lars Drake, Pekka Huhtanen and David Pimentel have significantly improved the quality of the paper by valuable comments. Two anonymous reviewers made quite different but valuable comments.


  1. Andresen, N. (1994). Fodrets energivärde vid ökande foderintag. SLU Info rapporter, Husdjur 76, SLU, Uppsala (Swedish).Google Scholar
  2. Andresen, N. Utfodringsrekommendationer i ekologisk mjölkproduktion. Hushållningssällskapet i Kristianstad.Google Scholar
  3. Azar, C. (2011). Biomass for energy: a dream come true… or a nightmare? Wiley Interdisciplinary Reviews: Climate Change, 2(3), 309–323.CrossRefGoogle Scholar
  4. Baumann, H., & Tillman, A.-M. (2004). The Hitch Hiker’s guide to LCA: An orientation in life cycle assessment methodology and application, Studentlitteratur.Google Scholar
  5. Berg, J., & Thuen, E. (1991). A comparison between some feed energy systems based on Nordic production experiments in cattle. Norwegian Journal of Agricultural Science, 5, 7–15.Google Scholar
  6. Bertilsson, J. (1994). Förändringar av AAT—rekommendationer beroende på ny fodermedelstabell och nya energirekommendationer. Stencil, institutionen för husdjurens utfodring och vård, SLU, Uppsala. (Swedish.) Google Scholar
  7. Cederberg, C., & Flysjö, A. (2004). Life cycle inventory of 23 dairy farms in South-West Sweden. SIK-report 728, SIK—Institutet för Livsmedel och Bioteknik, Göteborg.Google Scholar
  8. Cederberg, C., Flysjö, A., & Ericson, L. (2007). Livscykelanalys (LCA) av norrla¨ndsk mjo¨lkproduktion. SIK-rapport Nr 761, SIK—Institutet för Livsmedel och Bioteknik, Göteborg (Swedish, English summary).Google Scholar
  9. Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., et al. (2011). Bioenergy. In I. P. C. C. Special (Ed.), Report on renewable energy sources and climate change mitigation (pp. 209–332). New York: Cambridge University Press.CrossRefGoogle Scholar
  10. Costanza, R. (1994). Three general policies to achieve sustainability. In A.-M. Jansson, M. Hammer, C. Folke, & R. Costanza (Eds.), Investing in natural capital: The ecological economics approach to sustainability (pp. 392–407). Washington, DC: Island Press.Google Scholar
  11. Daly, H. (1990). Towards some operational principles of sustainable development. Ecological Economics, 2, 1–6.CrossRefGoogle Scholar
  12. Daly, H. E., & Cobb, J. B. (1989). For the common good: Redirecting the economy toward community, the environment, and a sustainable future. Boston: Beacon Press.Google Scholar
  13. Ebbersten, S. (1972). Pikloram (4-amino-3, 5, 6-triklorpikolinsyra) -studier av persistens i jord och växter samt metodstudier rörande biologisk bestämning av pikloramrester. PhD-dissertation. Uppsala: Libris (Swedish, English summary).Google Scholar
  14. Engström, G., Wadeskog, A., & Finnveden, G. (2007). Environmental assessment of Swedish agriculture. Ecological Economics, 60(3), 550–563.CrossRefGoogle Scholar
  15. FAO. (2006). Livestock’s long shadow. Rome. Accessed June 15, 2010.
  16. FAOstat. (2009). Several different datasets have been obtained from the website The specific web-addresses and date for access for each data can be obtained from the author.
  17. Giampietro, M. (2003). Multi-scale integrated analysis of agroecosystems. Boca Raton, NY: CRC Press.CrossRefGoogle Scholar
  18. Gunnarsson, S., Sonesson, U., Stenberg, M., Kumm, K. I., & Ventorp, M. (2005). Scenarios for future Swedish dairy production: A report from the synthesis group of FOOD 21. Uppsala: Swedish University of Agricultural Sciences.Google Scholar
  19. Gustafsson, A. (1990). Praktiska erfarenheter av smältbart råprotein och AAT/PBV-systemet i svenska besättningar. Meddelande SHS, 162, 36–39 (Swedish).Google Scholar
  20. Gustafsson, A. H. (2000). Utfodring för ekonomisk mjölkproduktion. In A. Engström och & B.-M. Jafner (Eds.), Mjölkkor (pp. 127–160). Helsingborg: LTs förlag.Google Scholar
  21. HELCOM. (2009). HELCOM Baltic Sea Action Plan. Accessed July 16, 2009.
  22. Hellstrand, S. (1988). Kan ekonomin i mjölkproduktionen förbättrasen modell för biologiskekonomisk analys av mjölkproduktionen och dess resultat för 15 gårdar i Värmland. Rapport 175, inst. för husdjurens utfodring och vård, SLU. Uppsala (In Swedish).Google Scholar
  23. Hellstrand, S. (1989). Bakgrund och kommentarer till 1989 års fodermedelstabeller och näringsrekommendationer för idisslare. Rapport 191, inst. för husdjurens utfodring och vård, SLU. Uppsala (Swedish).Google Scholar
  24. Hellstrand, S. (1998). Methods for operationalizing an ecologically effective and economically profitable sustainable development. Licentiate in philosophy thesis 1998:3 in Natural Resources Management May, Department of Systems Ecology, Stockholm University.Google Scholar
  25. Hellstrand, S. (2006). A multi-criteria analysis of sustainability effects of increasing concentrate intensity in Swedish milk production 1989–1999. Environment, Development and Sustainability, 8, 351–373.CrossRefGoogle Scholar
  26. Hellstrand, S. (2008a). Ekonomisk och miljömässig optimering av svensk mjölkproduktion. Report to the Swedish Environmental Protection Agency (Swedish, English summary).Google Scholar
  27. Hellstrand, S. (2008b). Ansökan medel för förstudie hur utveckla hållbara idisslarproduktionssystem i Skandinavien, med fokus på att kostnadseffektivt minska utsläpp av kväve till Östersjön (Swedish).Google Scholar
  28. Hellstrand, S. (2010). Om den svenska animalieproduktionens ochkonsumtionens hållbarhetsavtryck utomlands. Utredning på uppdrag av Naturvårdsverket (Swedish).Google Scholar
  29. Hellstrand, S., Skånberg, K., & Drake, L. (2009). The relevance of ecological and economic policies for sustainable development. Environment, Development and Sustainability, 11(4), 853–870.CrossRefGoogle Scholar
  30. Hellstrand, S., Skånberg, K., & Drake, L. (2010). A biophysically anchored production function. Environment, Development and Sustainability, 12(4), 573–596.CrossRefGoogle Scholar
  31. Hellstrand, S., & Yan, J. (2009). The potential to increase sustainable global green energy production through increased efficiency in milk and cattle production: A Swedish case. First International Conference on Applied Energy, January 57, 2009 Hong Kong.Google Scholar
  32. Huhtanen, P., & Hristov, A. N. (2009). A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows. Journal of Dairy Science, 92, 3222–3232.CrossRefGoogle Scholar
  33. Johnson, C. N. (2009). Ecological consequences of Late Quaternary extinctions of Megafauna. Proceedings of the Royal Society B, 276, 2509–2519.CrossRefGoogle Scholar
  34. Johnsson, H., Renborg, U., & Säfvestad, V. (1959). Resultatmaximering i lantbruket. Meddelande från jordbrukets utredningsinstitut (pp. 3–59). Stockholm (Swedish).Google Scholar
  35. Länsstyrelsen, i V. (2012). Underlag till Färdplan 2050. Rapport till Naturvårdsverket 2012-03-23 (Swedish).Google Scholar
  36. Liebig, J. (1840). Chemistry in its application to agriculture and physiology. London: Taylor and Watson (Referred by Odum 1991).Google Scholar
  37. Lindberg, J.-E., & Wiktorsson, H. (1995). Energianalyser i husdjursproduktionen—En jämförelse av olika produktionsgrenar. In “Lantbrukets energibalans—Energiflöden i jord- och skogsbruk.” Kungl. Skogs och Lantbruksakademins tidskrift, årg. 134, nr 6, 63–68 (Swedish).Google Scholar
  38. LRF. (2002). Maten och miljön. Livscykelanalys av sju livsmedel. Skövde (Swedish).Google Scholar
  39. MEA. (2009). Overview of the Milliennium ecosystem assessment. Accessed June 6, 2009.
  40. Nanneson, L., Nilsson, H., & Ytterborn, G. R. (1945). Jordbruksekonomi för jordbrukets ungdomsskolor och för självstudium, femte omarbetade upplagan, Stockholm.Google Scholar
  41. NorFor. (2004). Assessment of feed evaluation systems. NorFor (Nordic Feed Evaluation System). Report number 1 (Swedish, abstract in English).Google Scholar
  42. NRC. (2001). Nutrient requirements of dairy cattle (7th ed.). Washington: National Academic Press.Google Scholar
  43. Odum, H. T. (1988). Self-organization, transformity, and information. Science, 242, 1132–1139.CrossRefGoogle Scholar
  44. Odum, E. P. (1989). Ecology and our endangered life-support systems. Sunderland Massachusetts: Sinauer Associates, Inc. Publishers.Google Scholar
  45. Odum, E. P. (1991). Fundamentals of ecology. First edition 1971 USA: W. B. Saunders Company 3rd edition 1991. New Delhi: Natraj Publishers.Google Scholar
  46. OECD. (2001). Policies to enhance sustainable development. Meeting of the OECD council at ministerial level 2001. Accessed March 29, 2008.
  47. Pimentel, D., & Pimentel, M. H. (2008). Food, energy and society (3rd ed.). Boca Raton, NY: CRC Press.Google Scholar
  48. Renborg, U. (1957). Lineär planering använd i lantbruksekonomiska driftsplaneringsproblem, Meddelande från jordbrukets utredningsinstitut (pp. 3–57). Stockholm (Swedish).Google Scholar
  49. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., et al. (2009). A safe operating space for humanity. Nature, 461, 472–475.CrossRefGoogle Scholar
  50. SEPA. (1997). Det framtida jordbruket: Slutrapport från systemstudien för ett miljöanpassat och uthålligt jordbruk, rapport 4755 (Naturvårdsverket, Swedish).Google Scholar
  51. SEPA. (2009a). Swedish environmental objectives. Accessed July 16, 2009.
  52. SEPA. (2009b). Sveriges åtagande i Baltic sea action plan: Förslag till nationell åtgärdsplan. Accessed July 29, 2009 (Swedish).
  53. SEPA. (2011). Köttkonsumtionens klimatpåverkan: Drivkrafter och styrmedel. Rapport 6456 (The climate impact of meat consumption: Driving forces and measures. Swedish, English Summary).Google Scholar
  54. Shelford, V. E. (1913). Animal communities in temperate America. Chicago: University of Chicago Press (Referred by Odum 1991).Google Scholar
  55. Smith, F. A., Elliott, S. M., & Lyons, S. K. (2010). Methane emissions from extinct megafauna. Nature Geoscience, 3, 374–375.CrossRefGoogle Scholar
  56. Sonesson, U. (2005). Environmental assessment of future dairy farming systems—quantifications of two scenarios from the FOOD 21 synthesis work. SIK-report Nr 741, SIK, Gothemburg.Google Scholar
  57. Spörndly, R. (Ed.) (1989). Fodertabeller för idisslare 1989. Speciella skrifter 39. Uppsala: Swedish University of Agricultural Sciences.Google Scholar
  58. Spörndly, R. (1995). Fodertabeller för idisslare 1995, Rapport 235, inst. för husdjurens utfodring och vård, SLU, Uppsala (Swedish).Google Scholar
  59. Statistics Sweden. (2009). The system of environmental and economic accounts, see Accessed 2009-09-02.
  60. Stern, S., Sonesson, U., Gunnarsson, S., Kumm, K.-I., Öborn, I., & Nybrant, T. (2005). Sustainable pig production in the future—Development and evaluation of different scenarios. Report FOOD 21 No 5/2005, Swedish University of Agricultural Sciences and SIK, Uppsala.Google Scholar
  61. Svensk, M. (2003). Kvalitetssäkrad mjölkproduktion: Kvalitetssäkrad utfodring Mjölkkor. Eskilstuna.Google Scholar
  62. Svenska, L. (2003). Värdering av foder, En bok om LFU-systemet och Lantmännens Utfodringsrekommendationer, 2:a utgåvan (Swedish).Google Scholar
  63. UN. (2010). UN millennium goals. Accessed June 15, 2010.
  64. UN. (2012). UN millennium goals. Accessed May 24, 2012.
  65. Wijkman, A. (2004). Report on the communication from the commission to the council and the European Parliament on integrated product policy—Building on environmental life-cycle thinking (COM(2003) 302—C5-0550/2003—2003/2221(INI)), from the Committee on the Environment, Public Health and Consumer Policy, Rapporteur: Anders Wijkman, FINAL, A5-0261/2004, 8 April 2004.Google Scholar
  66. Wiktorsson, H. (1971). Studies on the effect of different levels of nutrition to dairy cows. Swedish Journal of Agricultural Research, 1, 83–103.Google Scholar
  67. Wiktorsson, H. (1979). General plan of nutrition for dairy cows. In W. H. Broster & H. Swan (Eds.), Feeding strategy for the high yielding dairy cow. London: Granada Publishing.Google Scholar
  68. Wirsenius, S. (2000). Human use of land and organic materials: Modelling the turnover of biomass in the global food system. PhD-diss. Chalmers University of Technology, Göteborg.Google Scholar
  69. Wirsenius, S. (2003a). Efficiencies and biomass appropriation of food commodities on global and regional level. Agricultural Systems, 77(3), 219–255.CrossRefGoogle Scholar
  70. Wirsenius, S. (2003b). The biomass metabolism of the food system: A model based survey of the global and regional turnover of food biomass. Journal of Industrial Ecology, 7(1), 47–80.CrossRefGoogle Scholar
  71. Wirsenius, S., Azar, C., & Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems, 103(9), 621–638.CrossRefGoogle Scholar
  72. Wirsenius, S., Hedenus, F., & Mohlin, K. (2011). Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects. Climatic Change, 108(1–2), 159–184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Sustainable Development of Society and TechnologyMälardalen UniversityVästeråsSweden

Personalised recommendations