Environment, Development and Sustainability

, Volume 10, Issue 6, pp 697–716 | Cite as

Estimation of the impact of oil palm plantation establishment on greenhouse gas balance

  • J. GermerEmail author
  • J. Sauerborn


Estimates of emissions indicate that if tropical grassland is rehabilitated by oil palm plantations, carbon fixation in plantation biomass and soil organic matter not only neutralises emissions caused by grassland conversion, but also results in the net removal of about 135 Mg carbon dioxide per hectare from the atmosphere. In contrast, the emission from forest conversion clearly exceeds the potential carbon fixation of oil palm plantings. Forest conversion on mineral soils to promote continued oil palm mono cropping causes a net release of approximately 650 Mg carbon dioxide equivalents per hectare, while the emission from peat forest conversion is even higher due to the decomposition of drained peat and the resulting emission of carbon oxide and nitrous oxide. The conversion of one hectare of forest on peat releases over 1,300 Mg carbon dioxide equivalents during the first 25-year cycle of oil palm growth. Depending on the peat depth, continuous decomposition augments the emission with each additional cycle at a magnitude of 800 Mg carbon dioxide equivalents per hectare.

The creation of ‘flexibility mechanisms’ such as the clean development mechanism and emission trading in the Kyoto Protocol could incorporate plantations as carbon sinks in the effort to meet emission targets. Thus, for the oil palm industry, grassland rehabilitation is an option to preserve natural forest, avoid emissions and, if the sequestered carbon becomes tradable, an opportunity to generate additional revenue.


Carbon sequestration Emission Green house gas Land rehabilitation Savanna Tropical forest Kyoto Protocol 


  1. Andersson, M., Michelsen, A., Jensen, M., & Kjoller, A. (2004). Tropical savannah woodland: Effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biology & Biochemistry, 36(5), 849–858.CrossRefGoogle Scholar
  2. Anderson, J. M., & Swift, M. J. (1983). Decomposition in tropical forests. In S. L. Sutton, T. C. Whitmore, & A. C. Chadwick (Eds.), Tropical rain forest: ecology and management (pp. 287–309). Oxford, UK: Blackwell.Google Scholar
  3. Andreae, M. O. (1991). Biomass burning: Its history, use and distribution and impact on environmental quality and global climate. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implications (pp. 3–21). Cambridge, Mass., USA: MIT Press.Google Scholar
  4. Araujo, T. M., Carvalho, J. A., Higuchi, N., Brasil, A. C. P., & Mesquita, A. L. A. (1999). A tropical rainforest clearing experiment by biomass burning in the state of Para, Brazil. Atmospheric Environment, 33, 1991–1998.CrossRefGoogle Scholar
  5. Arunachalam, A., Pandey, H. N., Tripathi, R. S., & Maithani, K. (1996). Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting. Forest Ecology and Management, 86, 141–150.CrossRefGoogle Scholar
  6. Baggs, E. M., Cadisch, G., Verchot, L., Millarn, N., & Ndufa, J. K. (2002). Environmental impacts of tropical agricultural systems: N 2 O emissions and organic matter management, 17th World Soil Science Conference ‘Soil Science: Confronting New Realities in the 21st Century’ (pp. 1–11). Bangkok, Thailand: International Soil Sciences Congress.Google Scholar
  7. Basiron, Y., & Weng C. K. 2004. The oil palm and its sustainability. Journal of Oil Palm Research, 16(1), 1–10.Google Scholar
  8. Bird, M. I., Veenendaal, E. M., Moyo, C., Lloyd, J., & Frost, P. (2000). Effect of fire and soil texture on soil carbon in a sub-humid savanna (Matopos, Zimbabwe). Geoderma, 94, 71–90.CrossRefGoogle Scholar
  9. Braconnier, S., & Caliman, J.-P. (1989). Premiers résultats concernant l’étude du systéme racinaire du palmier à huile en sol dégradé, Rapport Interne, L’Institut de recherches pour les huiles et oléagineux, 12 pp. Paris, France.Google Scholar
  10. Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer 55 pp. Rome, Italy: FAO Forestry Papers, FAO.Google Scholar
  11. Brown, S., & Gaston, G. (2001). Tropical Africa: Land use, biomass, and carbon estimates for 1980. Oak Ridge National Laboratory, Carbon Dioxide Information Center, Oak Ridge, Tennessee, USA. Accessed on, 12.11.2004, Available at: Scholar
  12. Brown, S., Iverson, L. R., Prasad, A., & Liu, D. (1993). Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto International, 4, 45–59.CrossRefGoogle Scholar
  13. Brown, S., & Lugo, A. E. (1982). The storage and production of organic matter in tropical forest and their role in the global carbon cycle. Biotropica, 14, 161–187.CrossRefGoogle Scholar
  14. Brown, S., & Lugo, A. E. (1984). Biomass of tropical forests: A new estimate based on forest volumes. Science, 223, 1290–1293.CrossRefGoogle Scholar
  15. Bryant, D., Burke, L., Mc Manus, J., & Spalding, M. (1998). Reefs at risk. A map-based indicator of the threats to the world´s coral reefs. Washington, USA: World Resources Institute.Google Scholar
  16. Bulla, L., & Lourido, J. (1980). Production, decomposition and diversity in three savannas of the Amazonas territory (Venezuela). In J. I. Furtado (Ed.), Tropical Ecology and Development - Proceedings of the Fifth International Symposium on tropical ecology. International Society of Tropical Ecology, Kuala Lumpur, Malaysia, pp. 73–77.Google Scholar
  17. Casson, A. (2000). The hesitant boom: Indonesia’s oil palm sub-sector in an era of economic crisis and political change. Bogor, Indonesia: Occasional Paper 29, CIFOR.Google Scholar
  18. Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V., & Melack, J. M. (2000). Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia, 122, 380–388.CrossRefGoogle Scholar
  19. Chikoye, D., & Ekeleme, F. (2003). Cover crops for cogongrass (Imperata cylindrica) management and effects on subsequent corn yield. Weed Science, 51(5), 792–797.CrossRefGoogle Scholar
  20. Chikoye, D., Manyong, V. M., & Ekeleme, F. (2000). Characteristics of speargrass (Imperata cylindrica) dominated fields in West Africa: Crops, soil properties, farmer perceptions and management strategies. Crop Protection, 19, 481–487.CrossRefGoogle Scholar
  21. Corley, R. H. V., & Tinker, P. B. (2003). The oil palm. Oxford, UK: Blackwell Science.Google Scholar
  22. Davies, S. J., & Unam, L. (1999). Smoke-haze from the 1997 Indonesian forest fires: Effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecology and Management, 124, 137–144.CrossRefGoogle Scholar
  23. de Castro, E. A., & Kauffman, J. B. (1998). Ecosystem structure in the Brazilian cerrado: A vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology, 14, 263–286.CrossRefGoogle Scholar
  24. Delitti, W. B. C., Pausas, J. G., & Burger, D. M. (2001). Belowground biomass seasonal variation in two Neotropical savannahs (Brazilian Cerrados) with different fire histories. Annals of Forest Science, 58(7), 713–721.CrossRefGoogle Scholar
  25. Driessen, P., Deckers, J., & Spaargaren, O. (Eds.) (2001). Lecture notes on the major soils of the world 344 pp. Rome, Italy.Google Scholar
  26. Ezenwa, I., Aribisala, O. A., & Aken’ova, M. E. (1996). Research note: Dry matter yields of Panicum and Brachiaria with nitrogen fertilisation or Pueraria in an oil palm plantation. Tropical Grasslands, 30, 414–417.Google Scholar
  27. Fairhurst, T. (1996). Management of nutrients for efficient use in smallholder oil palm plantations. PhD Thesis, Department of Biology, Imperial College at Wye, University of London, Wye, Ashford, Kent, UK.Google Scholar
  28. FAOSTAT data. (2005). Accessed on, 06.11.2005, Available at: Scholar
  29. Fearnside, P. M. (2000). Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46, 115–158.CrossRefGoogle Scholar
  30. Fearnside, P. M., & Barbosa, R. I. (1998). Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management, 108(1–2), 147–166.CrossRefGoogle Scholar
  31. Furukawa, Y., Inubushi, K., Ali, M., Itang, A. M., & Tsuruta, H. (2005). Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutrient Cycling in Agroecosystems, 71(1), 81–91.CrossRefGoogle Scholar
  32. García-Oliva, F., Casar, I., Morales, P., & Maass, J. M. (1994). Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest. Oecologia, 99, 392–396.CrossRefGoogle Scholar
  33. Germer, J. (2003). Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in West Sumatra. PhD Thesis, Institute for Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany.Google Scholar
  34. Germer, J., & Sauerborn, J. (2004). Solar radiation below the oil palm (Elaeis guineensis Jacq.) canopy and its impact on the undergrowth species composition. The Planter, 80(934):13–27.Google Scholar
  35. Gerritsma, W., & Soebagyo, F. X. (1999). An analysis of the growth of leaf area of oil palms in Indonesia. Experimental Agriculture, 35, 293–308.CrossRefGoogle Scholar
  36. Giardina, C. P., Binkley, D., Ryan, M. G., Fownes, J. H., & Senock, R. S. (2004). Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia, 139(4), 545–550.CrossRefGoogle Scholar
  37. Gijsman, A. J., Alarcón, H. F., & Thomas, R. J. (1997). Root decomposition in tropical grasses and legumes, as affected by soil texture and season. Soil Biology & Biochemistry, 29(9/10), 1443–1450.CrossRefGoogle Scholar
  38. Goldammer, J. G. (1993). Feuer in Waldökosystemen der Tropen und Subtropen. Basel, Switzerland: Birkhäuser.Google Scholar
  39. Goldammer, J. G. (1997). Overview of fire and smoke management issues and options in tropical vegetation. In H. A. Hassan, D. Taha, M. P. Dahalan, & A. Mahmud (Eds.), Transboundary pollution and the sustainability of tropical forests: Towards wise forest fire management—The Proceedings of the AIFM International Conference, ASEAN Institute for Forest Management (pp. 189–217). Kuala Lumpur: Ampang Press.Google Scholar
  40. Hadi, A., Inubushi, K., Purnomo, E., Razie, F., Yamakawa, K., & Tsuruta, H. (2000). Effect of land-use changes on nitrous oxide (N2O) emission from tropical peatlands. Chemosphere—Global Change Science, 2, 347–358.CrossRefGoogle Scholar
  41. Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., & Tsuruta, H. (2005). Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems, 71(1), 73–80.CrossRefGoogle Scholar
  42. Hamer, W. I. (1981). Soil conservation. In Consultant’s report, Technical Note No.7 and No. 10. UNDP, In: MacKinnon, K., Hatta, G., Halim, H., and Mangalik, A. (1996): The Ecology of Kalimantan. Periplus Editions (HK) Ltd, Singapore.Google Scholar
  43. Haron, K., Zakariae, Z. Z., & Anderson, J. M. (1999a). Mineralisation of soil organic carbon and nitrogen in relation to residue management following replanting of an oil palm plantation. Journal of Oil Palm Research, 11, 72–88.Google Scholar
  44. Haron, K., Zakariae, Z. Z., & Anderson, J. M. (1999b). Quantification of oil palm biomass and nutrient value in a mature plantation. I. Above-ground biomass. Journal of Oil Palm Research, 11(1), 23–32.Google Scholar
  45. Haron, K., Zakariae, Z. Z., & Anderson, J. M. (1999c). Quantification of oil palm biomass and nutrient value in a mature plantation. II. Below-ground biomass. Journal of Oil Palm Research, 11(2), 63–71.Google Scholar
  46. Hartemink, A. E. (2001). Biomass and nutrient accumulation of Piper aduncum and Imperata cylindrica fallows in the humid lowlands of Papua New Guinea. Forest Ecology and Management, 144(1–3):19–32.CrossRefGoogle Scholar
  47. Hartemink, A. E. (2004). Nutrient stocks of short-term fallows on a high base status soil in the humid tropics of Papua New Guinea. Agroforestry Systems, 63(1), 33–43.Google Scholar
  48. Hartley, C. W. S. (1988). The oil palm. Harlow, UK: Longman.Google Scholar
  49. Hashimoto, T., Kojima, K., Tange T., & Sasaki, S. (2000). Changes in carbon storage in fallow forests in the tropical lowlands of Borneo. Forest Ecology and Management, 126, 331–337.CrossRefGoogle Scholar
  50. Henson, I. E. (1998). Notes on oil palm productivity. I. Productivity at two contrasting sites. Elaeis, 10(1), 57–67.Google Scholar
  51. Henson, I. E., & Chai, S. H. (1997). Analysis of oil palm productivity. II. Biomass, distribution, productivity and turnover of the root system. Elaeis, 9(2), 78–92.Google Scholar
  52. Henson, I. E., & Dolmat, M. T. (2003). Physiological analysis of an oil palm density trial on a peat soil. Journal of Oil Palm Research, 15(2), 1–27.Google Scholar
  53. Holmes, J. H. G., Lemerle, C., & Schottler, J. H. (1980). Imperata cylindrica for cattle production in Papua New Guinea. Papua New Guinea Agricultural Journal, 31, 51–62.Google Scholar
  54. Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6), 945–958.CrossRefGoogle Scholar
  55. Houghton, R. A., & Goodale, C. L. (2004). Effects of land-use change on the carbon balance of terrestrial ecosystems. In R. DeFries, G. Asner, & R. Houghton (Eds.), Ecosystems and Land Use Change (pp. 85–98). Geophysical Monograph Series.Google Scholar
  56. Houghton, R. A., Lefkowitz, D. S., & Skole, D. L. (1991). Changes in the landscape of Latin America between (1850) and 1985 I. Progressive loss of forest. Forest Ecology and Management, 38, 143–172.CrossRefGoogle Scholar
  57. Husin, M., Hassan, A. H. H., & Mohammed, A. T. (1986). Availability and potential utilization of oil palm trunks and fronds up to the year 2000. Kuala Lumpur, Malaysia: PORIM occasional paper 20.Google Scholar
  58. Ibrahim, A. (1992). Oil palms are environment friendly. Kuala Lumpur, Malaysia: New Straits Times.Google Scholar
  59. Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., & Tsuruta, H. (2003). Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52(3), 603–608.CrossRefGoogle Scholar
  60. IPCC, (1997). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories—Workbook (Volume 2). J. Houghton et al., Available at:, Accessed on, 12.12.2000.Google Scholar
  61. IPCC, (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. J. T. Houghton et al., Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  62. IPCC, (2003). Good Practice Guidance for Land Use, Land-use Change and Forestry. Intergovernmental Panel on Climate Change—IPCC/OECD/IEA/IGES, Hayama, Japan. Accessed on:05.01.2006, Available at: Scholar
  63. Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distribution for terrestrial biomes. Oecologia, 108, 389–411.CrossRefGoogle Scholar
  64. Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J., & Vasander, H. (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11(10), 1788–1797.CrossRefGoogle Scholar
  65. Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.CrossRefGoogle Scholar
  66. Jourdan, C., & Rey, H. (1997a). Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant and Soil, 189, 33–48.CrossRefGoogle Scholar
  67. Jourdan, C., & Rey, H. (1997b). Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system II. Estimation of root parameters using the RACINES postprocessor. Plant and Soil, 190, 235–246.CrossRefGoogle Scholar
  68. Khalid, H., Zakaria, Z. Z., & Anderson, J. M. (2000). Nutrient cycling in an oil palm plantation: The effects of residue management practicies during replanting on dry matter and nutrient uptake of young palms. Elaeis, 12(2), 29–37.Google Scholar
  69. Khalid, H., Zin, Z. Z., & Anderson, J. M. (1999). Quantification of oil palm biomass and nutrient value in a mature plantation. II. Below-ground biomass. Journal of Oil Palm Research, 11(2), 63–71.Google Scholar
  70. Khalid, H., Zin, Z. Z., & Anderson, J. M. (2000). Decomposition processes and nutrient release patterns of oil palm residues. Journal of Oil Palm Research, 12(1), 46–63.Google Scholar
  71. King, S. E., & Grace, J. B. (2000). The effects of gap size and disturbance type on invasion of wet pine savanna by congograss, Imperata cylindrica (Poaceae). American Journal of Botany, 87(9), 1279–1286.CrossRefGoogle Scholar
  72. Kyuma, K. (2003). Soil degradation in the coastal lowlands of Southeast Asia. Food and Fertilzer Technology Center, Taipei, Taiwan. Accessed on, 25.10.2005, Available at: Scholar
  73. Laidlaw, R. K. (2000). Effects of habitat disturbance and protected areas on mammals of Peninsular Malaysia. Conservation Biology, 14(6), 1639–1648.CrossRefGoogle Scholar
  74. Lasco, R. D. (2002). Forest carbon budgets in Southeast Asia following harvesting and land cover change. Science in China Series C-Life Sciences, 45, 55–64.Google Scholar
  75. Lasco, R. D., Lales, J. S., Arnuevo, M. T., Guillermo, I. Q., Jesus, A. C. D., Medrano, R., et al. (2000). Carbon dioxide (CO2) storage and sequestration in the Leyte Geothermal Reservation, Philippines, World Geothermal Congress, Kyushu-Tohoku, Japan, pp. 639–644.Google Scholar
  76. Laurance, W. F., Laurance, S. G., & Delamonica, P. (1998). Tropical forest fragmentation and greenhouse gas emissions. Forest Ecology and Management, 110, 173–180.CrossRefGoogle Scholar
  77. Levine, J. S., Bobbe, T., Ray, N., Singh, A., & Witt, R. G. (1999). Wildland fires and the environment: A global synthesis. UNEP, UNEP/DEIAEW/TR.99-1, 46 pp.Google Scholar
  78. MacKinnon, K., Hatta G., Halim H., & Mangalik A. (1996). The ecology of Kalimantan, The Ecology of Indonesia Series Volume III. Periplus Editions (HK) Ltd.Google Scholar
  79. Maene, L. M., Thong, K. C., Ong, T. S., & Mokhtaruddin, A. M. (1979). Surface wash under mature oil palm. In E. Pushparajah (Ed.), Proceedings of Symposium on Water in Malaysian Agriculture (pp. 203–216). Kuala Lumpur, Malaysia: Malaysian Society of Soil Science.Google Scholar
  80. Magcale-Macandog, D. B. (2002). Soil erosion and sustainability of different land uses of smallholder Imperata grasslands in SEA. In J. Juren, W. Lianxiang, W. Deyi, T. Xiaoning, & N. Jing (Eds.), 12th International Soil Conservation Organization (ISCO) Conference: Sustainable utilization of global soil and water resources (pp. 306–312). Beijing, People’s Republic of China: Tsinghua University Press.Google Scholar
  81. Melling, L., Hatano, R., & Goh, K. J. (2005a). Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biology & Biochemistry, 37(8), 1445–1453.CrossRefGoogle Scholar
  82. Melling, L., Hatano, R., & Goh, K. J. (2005b). Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus Series B-Chemical and Physical Meteorology, 57(1), 1–11.CrossRefGoogle Scholar
  83. Mistry, J. (2000). Savannas. Progress in Physical Geography, 24(4), 601–608.Google Scholar
  84. Moreira, A. G. (2000). Effects of fire protection on savanna structure in Central Brazil. Journal of Biogeography, 27, 1021–1029.CrossRefGoogle Scholar
  85. Muraleedharan, T. R., Radojevic, M., Waugh, A., & Caruana, A. (2000). Emissions from the combustion of peat: An experimental study. Atmospheric Environment, 34(18):3033–3035.CrossRefGoogle Scholar
  86. Murayama, S., & Bakar, Z. A. (1996a). Decomposition of tropical peat soils. 1. Decomposition kinetics of organic matter in peat soils. Japan Agricultural Research Quarterly, 30, 145–151.Google Scholar
  87. Murayama, S., & Bakar, Z. A. (1996b). Decomposition of tropical peat soils. 2. Estimation of in situ decomposition by measurement of CO2 flux. Japan Agricultural Research Quarterly, 30, 153–158.Google Scholar
  88. Murty, D., Kirschbaum, M. U. F., McMurtrie, R. E., & McGilvray, A. (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8(2), 105–123.CrossRefGoogle Scholar
  89. Mutert, E., Fairhurst, T. H., & von Uexküll, H. R. (1999). Agronomic management of oil palms on deep peat. Better Crops International, 13(1), 22–27.Google Scholar
  90. Mutuo, P. K., Cadisch, G., Albrecht, A., Palm, C. A., & Verchot, L. (2005). Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosystems, 71(1), 43–54.CrossRefGoogle Scholar
  91. NRI (1996). Imperata management for smallholders: An extensionist’s guide to rational Imperata management for smallholders. Indonesian Rubber Research Institute, Sembawa, Indonesia and Natural Resources Institute, Chatham, UK.Google Scholar
  92. Otsamo, A. (2001). Forest plantations on Imperata grasslands in Indonesia—Establishment, silviculture and utilization potential, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, 85 pp.Google Scholar
  93. Palm, C. A., Woomer, P. L., Alegre, J., Arevalo, L., Castilla, C., Cordeiro, D. G., et al. (2000). Carbon sequestration and trace gas emissions in slash-and-burn and alternative land-uses in the humid tropics. C. Palm, Final report, Phase II (Reprint), ASB Climate Change Working Group, Nairobi, Kenya.Google Scholar
  94. Parrotta, J. A. (1992). The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecology and Ecosystems 41, 115–133.CrossRefGoogle Scholar
  95. Patzek, T. W., Pimentel, D. (2005). Thermodynamics of energy production from biomass. Critical Reviews in Plant Sciences, 24(5–6), 327–364.CrossRefGoogle Scholar
  96. Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vasquez, R. M., et al. (1998). Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 282(5388):439–442.CrossRefGoogle Scholar
  97. PointCarbon (2006). Accessed on, 20.04.2006, Available at: Scholar
  98. Proctor, J., Anderson, J. M., Chai, P., & Vallack, H. W. (1983). Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. Journal of Ecology, 71, 237–260.Google Scholar
  99. Proctor, J., Anderson, J. M., Fogden, S. C. L., & Vallack, H. W. (1983). Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park, Sarawak. II. Litterfall, litter standing crop and preliminary observations on herbivory. Journal of Ecology, 71, 261–283.CrossRefGoogle Scholar
  100. Robertson, J. M. Y., & Schaik, C. P. V. (2001). Causal factors underlying the dramatic decline of the Sumatran orang-utan. Oryx, 35, 26–38.CrossRefGoogle Scholar
  101. Roshetko, J. M., Delaney, M., Hairiah, K., & Purnomosidhi, P. (2002). Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? American Journal of Alternative Agriculture, 17(2), 1–11.CrossRefGoogle Scholar
  102. Ross, M. (1999). Auswirkungen verschiedener Rodeverfahren und des Unterbewuchses auf Bodenfruchtbarkeit, Bodenwasserhaushalt, Erosion, und Bestandsentwicklung eines Ölpalmenbestandes. Aachen, Germany: Shaker Verlag.Google Scholar
  103. Rowell, A., & Moore, P. F. (2000). Global review of forest fires. WWF/IUCN.Google Scholar
  104. Sanchez, P. A. (2000). Linking climate change research with food security and poverty reduction in the tropics. Agriculture, Ecosystems and Environment, 82, 371–383.CrossRefGoogle Scholar
  105. Sanford, J. R. L., & Cuevas, E. (1996). Root growth and rhizosphere interactions in tropical forests. In S. S. Mulkey, R. L. Chazdon, & A. P. Smith (Eds.), Tropical forest plant ecophysiology (pp. 268–300). New York, USA: Chapman and Hall.Google Scholar
  106. Scholes, R. J., & Hall D. O. (1996). The carbon budget of tropical savannas, woodlands and grasslands. In A. I. Breymeyer, D. O. Hall, J. M. Melillo, & G. I. Agren (Eds.), Global change: Effects on coniferous forests and grasslands (pp. 69–100). Chichester, UK: Wiley.Google Scholar
  107. Shimada, S., Takahashi, H., Haraguchi, A., & Kaneko, M. (2001). The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: Estimating their spatial variability in density. Biogeochemistry, 53(3), 249–267.CrossRefGoogle Scholar
  108. Sombroek, W. G., Nachtergaele, F. O., & Hebel, A. (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio, 22, 417–426.Google Scholar
  109. Syahrinudin (2005). The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. P. L. G. Vlek, M. Denich, C. Martius, C. Rodgers and N.V.D. Giesen, Ecology and Development Series, 28. Cuvillier Verlag, Göttingen, Germany.Google Scholar
  110. Terry, R. E., Tate, R. L., & Duxbury, J. M. (1981). The effect of flooding on nitrous oxide emissions from an organic soil. Soil Science, 132, 228–232.CrossRefGoogle Scholar
  111. Thenkabail, P. S., Stucky, N., Griscom, B. W., Ashton, M. S., Diels, J., Meer, B. V. D., et al. (2004). Biomass estimations and carbon Stock calculations in the oil palm plantations of African derived savannas using IKONOS data. International Journal of Remote Sensing, 25, 1–27.Google Scholar
  112. van der Werf, G. R., Randerson, J. T., Collatz, J., & Giglio, L. (2003). Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology, 9(4), 547–562.CrossRefGoogle Scholar
  113. Vitousek, P. M., & Sanford R. L. (1986). Nutrient cycling in moist tropical forests. Annual Review of Ecology and Systematics, 17, 137–168.CrossRefGoogle Scholar
  114. von Uexküll, H. R., & Mutert, E. M. (1994). Rehabilitation and lasting improvement of degraded land in Indonesia. In Giessener Beiträge zur Entwicklungsforschung. Reihe 1 (Symposien) Band 21. Wissenschaftliches Zentrum Tropeninstitut, Giessen, Germany, pp. 47–65.Google Scholar
  115. Wakker, E. (1999). Forest fires and the expansion of Indonesia’s oil-palm plantations. WWF Indonesia, Jakarta, 25 pp.Google Scholar
  116. Wesseling, I., Uychiaoco, A. J., Alino, P. M., Aurin, T., & Vermaat, J. E. (1999). Damage and recovery of four Philippine corals from short-term sediment burial. Marine Ecology-Progress Series, 176, 11–15.CrossRefGoogle Scholar
  117. Whitmore, T. C. (1984). Tropical rain forest of the Far East. Oxford, UK: Clarendon Press.Google Scholar
  118. Whitmore, T. C. (1990). An introduction to tropical rain forests. Oxford, UK: Clarendon Press.Google Scholar
  119. Wibowo, A., Suharti, M., Sagala, A. P. S., Hibani, H., & van Noordwijk, M. (1997). Fire management on Imperata grasslands as part of agroforestry development in Indonesia. In D. P. Garrity (Ed.), Agroforestry innovations for Imperata grassland rehabilitation. Agroforestry Systems (pp. 203–217). Dordrecht: Kluwer Academic Publishers.Google Scholar
  120. Wösten, J. H. M., Ismail, A. B., & Wijk, V. A. L. M. (1997). Peat subsidence and its practical implications: A case study in Malaysia. Geoderma, 78, 25–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of Plant Production and Agroecology in the Tropics and SubtropicsUniversity of HohenheimStuttgartGermany
  2. 2.Celeirós, BragaPortugal

Personalised recommendations