Skip to main content
Log in

Ecolabel: Is More Information Better?

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

We study in this paper the effect of the type of information provided by an ecolabel. For this purpose, in the framework of a model of vertical differentiation, we compare the effects of a partial information label (Type I) and a complete information label (Type III) on firms’ profits, industry profit, consumers’ surplus, environmental damage and social welfare. A partial information label indicates that the environmental quality of a good exceeds some given threshold. The authority issuing a partial information label chooses its labeling criteria while maximizing the social welfare. A complete information label indicates the exact environmental quality chosen by firms. We prove that while a partial information label always improves the social welfare and deteriorates the green firm profit compared to a complete information label, the comparison between the two types of ecolabel in terms of the brown firm’s profit, the industry’s profit, the consumers surplus and the environment depends in a non-obvious way on the marginal cost of quality and on the environmental sensitivity to quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

’Not applicable’

Code Availability

’Not applicable’

Notes

  1. See OECD [59].

  2. ISO type 2 Self-declared environmental claims also exist, but they are not of interest for our paper as they are claims made by companies describing an environmental attribute of their product but not third-party certified.

  3. An extensive literature review about greewashing can be found in Lyon and Montgomery [56], Seele and Gatti [61] and Gatti et al. [52].

  4. This way of modeling consumers’ preferences is standard in the literature about ecolabels and was used in Poret [20], Li & Van’t Veld [21]; Fischer & Lyon [18]; Andre et al. [9]... Only a few papers consider a double differentiation (horizontal and vertical) when dealing with ecolabels: Xia et al. [24] and Das [23].

  5. Amir et al. [42] offer an alternative modeling of green quality using Spence [62]’s model. There is an abundant literature on pollution regulation with a homogenous product: David and Sinclair-Desgagné [50] and [49], Benchekroun and Yildiz [45], Acikgoz and Benchekroun [41]...among the most recent papers. In our model, we suppose that the environmental quality of the product, which summarizes its environmental impact including direct pollution, determines at the same time the environmental damage and the utility of the consumers differently depending on their awareness of the environment.

  6. we may also suppose that it is equally perceived by each one of them as assumed by Bonroy & Constantatos [22]. Both hypotheses indifferently lead to the same analysis.

  7. The results would of course differ if the label was proposed by an NGO or by the industry as the labeling authority will maximize a different objective function.

  8. Anderson et al. [43], Crampes and Hollander [48], Ecchia and Lambertini [51], Maxwell [57], Lahmandi-Ayed [53] and [54], Amacher et al. [7], Ibanez and Grolleau [12], Bouziri et al. [46], are only examples from the existing literature supposing full coverage markets.

  9. For instance, Choi and Shin [47], Motta [58], Polavarapu and Vaidya [60], Aoki and Prusa [44], Lutz et al. [55], Zhou et al. [63], André et al. [9], Poret [20]...

  10. More accurately, all the calculations are made with \(\underline{q} > 0\), then we make \(\underline{q}\) approach zero.

  11. It corresponds to what Liao notes \(\mu ^{**}\). We choose to note differently from them because \(\mu\) has another meaning in our paper.

  12. See Result 3 and its proof in Ben Youssef and Lahmandi-Ayed [8].

References

  1. King, A. A., & Lenox, M. J. (2001). Does It Really Pay to Be Green? An Empirical Study of Firm Environmental and Financial Performance: An Empirical Study of Firm Environmental and Financial Performance. Journal of Industrial Ecology, 5(1), 105–116.

    Article  Google Scholar 

  2. Freedman, M., & Patten, D. M. (2004). Evidence on the pernicious effect of financial report environmental disclosure. Accounting Forum, 28(1), 27–41.

    Article  Google Scholar 

  3. Nakao, Y., Nakano, M., Amano, A., Kokubu, K., Matsumura, K., & Gemba, K. (2007a). Corporate environmental and financial performances and the effects of information-based instruments of environmental policy in Japan. International Journal of Environment and Sustainable Development, 6(1), 95–112.

    Article  Google Scholar 

  4. Nakao, Y., Amano, A., Matsumura, K., Genba, K., & Nakano, M. (2007b). Relationship between environmental performance and financial performance: an empirical analysis of Japanese corporations. Business Strategy and the Environment, 16(2), 106–118.

    Article  Google Scholar 

  5. Guenster, N., Bauer, R., Derwall, J., & Koedijk, K. (2011). The Economic Value of Corporate Eco-efficiency. European Financial Management, 17(4), 679–704.

    Article  Google Scholar 

  6. Liao, P. C. (2008). A note on market coverage in vertical differentiation models with fixed costs. Bulletin of Economic Research, 60(1), 27–44.

    Article  Google Scholar 

  7. Amacher, F. S., Koskela, E., & Ollikainen, M. (2004). Environmental Quality Competition and Eco-Labeling. Journal of Environmental Economics and Management, 47(2), 284–306.

    Article  Google Scholar 

  8. BenYoussef, A., & Lahmandi-Ayed, R. (2008). Eco-Labeling, Competition and Environment: Endogenization of Labeling Criteria. Environmental and Resource Economics, 41(2), 133–154.

    Article  Google Scholar 

  9. Andre, F. J., Gonzalez, P., & Porteiro, N. (2009). Strategic Quality Competition and the Porter Hypothesis. Journal of Environmental Economics and Management, 57(2), 182–194.

    Article  Google Scholar 

  10. Nimon, W., & Beghin, J. (1999). Ecolabels and International Trade in the Textile and Apparel Market. American Journal of Agricultural Economics, 81(5), 1078–1083.

    Article  Google Scholar 

  11. Greaker, M. (2006). Eco-Labels, Trade and Protectionism. Environmental and Ressource Economics, 33, 1–37.

    Article  Google Scholar 

  12. Ibanez, L., & Grolleau, G. (2008). Can Eco-Labeling Schemes Preserve the Environment? Environmental and Resource Economics, 40(2), 233–249.

    Article  Google Scholar 

  13. Hamilton, S. F., & Zilberman, D. (2006). Green Markets, Eco-Certification, and Equilibrium Fraud. Journal of Environmental Economics and Management, 52(3), 627–644.

    Article  Google Scholar 

  14. Mattoo, A., & Singh, H. V. (1994). Eco-labeling: Policy Considerations. Journal of Economic Theory, 41(1), 53–65.

    Google Scholar 

  15. Dosi, C., & Moretto, M. (2001). Is Ecolabeling a Reliable Environmental Policy Measure? Environmental and Resource Economics, 18(1), 113–127.

    Article  Google Scholar 

  16. Harbaugh, R., Maxwell, J., & Roussillon, B. (2011). Label Confusion: The Groucho Effect of Uncertain Standards. Management Science, 57(9), 1512–1527.

    Article  Google Scholar 

  17. BenYoussef, A., & Abderrazak, C. (2009). Multiplicity of Eco-Labels, Competition, and the Environment. Journal of Agricultural and Food Industrial Organization, 7(2), 1–22.

    Google Scholar 

  18. Fischer, C., & Lyon, T. P. (2014). Competing Environmental Labels. Journal of Economics and Management Strategy, 23(3), 692–716.

  19. Fischer, C., & Lyon, T. P. (2019). A Theory of Multi-Tier Ecolabel Competition. Journal of the Association of Environmental and Resource Economists, 6(3), 461–501.

  20. Poret, S. (2019). Label Wars: Competition among NGOs as Sustainability Standard Setters. Journal of Economic Behavior and Organization, 160, 1–18.

    Article  Google Scholar 

  21. Li, Y., & Van’t Veld, K. (2015). Green, Greener, Greenest: Eco-label Degradation and Competition. Journal of Environmental Economics and Management, 72, 164–176.

    Article  Google Scholar 

  22. Bonroy, O., & Constantanos, C. (2015). The Economics of Eco-Labeling: Theory and Empirical Implications. American Journal of Agricultural Economics, 97(1), 239–259.

    Article  Google Scholar 

  23. Das, S. (2016). Certification under oligopolistic competition. Environmental and Resource Economics, 65(1), 251–271.

    Article  Google Scholar 

  24. Xia, H., Fan, T., & Lou, G. (2021). Environmental certification in a differentiated duopoly. Economic Research-Ekonomska Istrazivanja, 34(1), 650–669.

    Article  Google Scholar 

  25. Leire, C., & Thidell, A. (2005). Product-Related Environmental Information to Guide Consumer Purchases- A Review and Analysis of Research and Perceptions, Understanding and Use among Nordic Consumers. Journal of Cleaner Production, 13(10–11), 1061–1070.

    Article  Google Scholar 

  26. Van Amstel, M., Driessen, P., & Glasbergen, P. (2008). Eco-labeling and Information Assymetry: A Comparison of Five Ecolabels in the Netherlands. Journal of Cleaner Production, 16(3), 263–276.

  27. Podhorsky, A. (2020). Environmental Certification Programs: How Does Information Provision Compare with Taxation? Journal of Public Economic Theory, to appear.

  28. Sinclair-Desgagné, B., & Gozlan, E. (2003). A theory of environmental risk disclosure. Journal of Environmental Economics and Management, 45(2, Supple), 377-393.

  29. Garrido, D., Espinola-Arredondo, A., & Munoz-Garcia, F. (2020). Can mandatory certification promote greenwashing? A signaling approach. Journal of Public Economic Theory, to appear.

  30. Sakai, Y. (1985). The Value of Information in a Simple Duopoly Model. Journal of Economic Theory, 36, 36–54.

    Article  CAS  Google Scholar 

  31. Schlee, E. E. (1996). The Value of Information about Product Quality. The RAND Journal of Economics, 27(4), 803–815.

    Article  Google Scholar 

  32. Gal-Or, E. (1987). First-Mover Disadvantages with Private Information. Review of Economic Studies, 54, 279–292.

    Article  Google Scholar 

  33. Gal-Or, E. (1988). The Advantages of Imprecise Information. The RAND Journal of Economics, 19(2), 266–275.

    Article  Google Scholar 

  34. Scammon, D. L. (1977). Information Load and Consumers. Journal of Consumer Research, 4(3), 148–155.

    Article  Google Scholar 

  35. Mussa, M., & Rosen, S. (1978). Monopoly and Product Quality. Kyklos, 18(2), 301–317.

    Google Scholar 

  36. Takeshi, I., & Mukherjee, A. (2020). Make and buy in a polluting industry. Journal of Public Economic Theory, 1–23.

  37. Gabszewicz, J. J., & Thisse, J. F. (1979). Price competition, quality and income disparities. Journal of Economic Theory, 20(3), 340–359.

    Article  Google Scholar 

  38. Wauthy, X. (1996). Quality Choice in Models of Vertical Differentiation. Journal of Industrial Economics, 44(3), 345–353.

    Article  Google Scholar 

  39. Neven, D., & Thisse, J. F. (1989). Products Selection: Competition in Quality and Variety. Annales d’Économie et de Statistique, 15(16), 85–112.

    Article  Google Scholar 

  40. Garcia-Gallego, A., & Georgantzis, N. (2009). Market Effects of Changes in Consumers’ Social Responsibility. Journal of Economics and Management Strategy, 18(1), 235–262.

  41. Acikgoz, O. T., & Benchekroun, H. (2017). Anticipated international environmental agreements. European Economic Review, 92, 306–336.

    Article  Google Scholar 

  42. Amir, R., Gama, R. A., & Maret, I. (2019). Environmental quality and monopoly pricing. Resource and Energy Economics, 58, 101–109.

    Article  Google Scholar 

  43. Anderson, S. P., De Palma, A., & Thisse, J. F. (1992). Discrete choice theory of product differentiation (pp. 305–316). Cambridge, Mass: The MIT Press.

    Book  Google Scholar 

  44. Aoki, R., & Prusa, T. J. (1996). Sequential versus simultaneous choice with endogenous quality. International Journal of Industrial Organization, 15(1), 103–121.

    Article  Google Scholar 

  45. Benchekroun, H., Yildiz, H. M. (2011). Free Trade, Autarky and the Sustainability of an International Environmental Agreement. The B.E. Journal of Economic Analysis & Policy, 11(1).

  46. Bouziri, A., Ghazzai, H., & Lahmandi-Ayed R. (2021). International Ecolabel Vs National Ecolabels. Environmental Modelling and Assessment. https://doi.org/10.1007/s10666-021-09755-9.

  47. Choi, C., & Shin, H. (1992). A Comment on a Model of Vertical Product Differentiation. The Journal of Industrial Economics, 40(2), 229–231.

    Article  Google Scholar 

  48. Crampes, C., & Hollander, A. (1995). Duopoly and quality standards. European Economic Review, 39(1), 71–82.

    Article  Google Scholar 

  49. David, M., & Sinclair-Desgagné, B. (2010). Pollution Abatement Subsidies and the Eco-Industry. Environmental and Ressource Economics, 45, 271–282.

    Article  Google Scholar 

  50. David, M., & Sinclair-Desgagné, B. (2005). Environmental Regulation and the Eco-Industry. Journal of Regulatory Economics, 28, 141–155.

    Article  Google Scholar 

  51. Ecchia, G., & Lambertini, L. (1997). Minimum quality standards and collusion. Journal of Industrial Economics, 45(1), 101–113.

    Article  Google Scholar 

  52. Gatti, L., Seele, P., & Rademacher, L. (2019). Grey zone in- greenwash out. A review of greenwashing research and implications for the voluntary-mandatory transition of CSR. International Journal of Corporate Social Responsibility, 4(6).

  53. Lahmandi-Ayed, R. (2000). Natural Oligopolies : a vertical differentiation model. International Economic Review, 41(4), 971–987.

    Article  Google Scholar 

  54. Lahmandi-Ayed, R. (2004). Finiteness Property in Vertically Differentiated Markets: a note on locally increasing and decreasing returns. Economic Theory, 23(2), 371–382.

    Article  Google Scholar 

  55. Lutz, S., Lyon, T. P., & Maxwell, J. W. (2000). Quality leadership when regulatory standards are forthcoming. Journal of Industrial Economics, 48(3), 331–349.

    Article  Google Scholar 

  56. Lyon, T. P., & Montgomery, A. W. (2015). The Means and End of Greenwash. Organization & Environment, 28(2), 223–249.

    Article  Google Scholar 

  57. Maxwell, J. W. (1998). Minimum quality standards as a barrier to innovation. Economics Letters, 58(3), 355–360.

    Article  Google Scholar 

  58. Motta, M. (1993). Endogenous Quality Choice: Price vs. Quantity Competition. Journal of Industrial Economics, 41(2), 113–131.

    Article  Google Scholar 

  59. OECD (2003). Environmentally Sustainable Buildings: Challenges and Policies, OECD Publishing, Paris, doi: 10.1787/9789264033863-en.

    Article  Google Scholar 

  60. Polavarapu, R., & Vaidya, A. (1996). Optimal trade policy with quality differentiated goods. International Trade Journal, 10(3), 379–406.

    Article  Google Scholar 

  61. Seele, P., & Gatti, L. (2017). Greenwashing Revisited: In Search of a Typology and Accusation-Based Definition Incorporating Legitimacy Strategies. Business Strategy and the Environment, 26(2), 239–252.

  62. Spence, A. (1975). Monopoly, Quality, and Regulation. Bell Journal of Economics, 6(2), 417–429.

    Article  Google Scholar 

  63. Zhou, D., Spencer, B. J., & Vertinsky, I. (2002). Strategic trade policy with endogenous choice of quality and asymmetric costs. Journal of International Economics, 56(1), 205–232.

    Article  Google Scholar 

Download references

Funding

’Not applicable’

Author information

Authors and Affiliations

Authors

Contributions

’Not applicable’

Corresponding author

Correspondence to Rim Lahmandi-Ayed.

Ethics declarations

Conflicts of interest/Competing interests

’Not applicable’

Additional information

We are grateful to Rabah Amir for helpful comments and suggestions.

Appendices

Appendix A

1.1 Proof of Lemma 1

The proof follows from Result 1. The firms’ demands and margins with intermediate marginal costs are given, respectively, by:

\({\left\{ \begin{array}{ll} D_1=\frac{\overline{\theta }-2\underline{\theta }+\alpha }{3},\\ D_2=\frac{2\overline{\theta }-\underline{\theta }-\alpha }{3}.\\ \end{array}\right. }\) and \({\left\{ \begin{array}{ll} p_1-\alpha q_1=\frac{\overline{\theta }-2\underline{\theta }+\alpha }{3}(q_2-q_1),\\ p_2-\alpha q_2=\frac{2\overline{\theta }-\underline{\theta }-\alpha }{3}(q_2-q_1).\\ \end{array}\right. }\)

\(\blacksquare\)

1.2 Proof of Result 2

The proof is based on Result 1. Assuming that \(q_1<q_2\), we have that \(\Pi _1=(\alpha -\overline{\theta })(q_2-q_1)-\beta (q_1-\underline{q})^2\) and \(\Pi _2=-\beta (q_2-\underline{q})^2\). We easily check that \(\Pi _1\) is decreasing with respect to \(q_1\) and \(\Pi _2\) is decreasing with respect to \(q_2\). Thus, both firms produce \(\underline{q}\). When \(q_1=q_2=q\) then \(\Pi _1=\Pi _2=-\beta (\Delta q)^2\) and both firms produce \(\underline{q}\). \(\blacksquare\)

Denote by \(\underline{\delta }_I=\frac{(\alpha +\overline{\theta }-2\underline{\theta })^2}{9\beta }\).

Denote by \(\underline{D}\), \(\underline{CS}\) and \(\underline{SW}\) the environmental damage, consumers’ surplus and the social welfare, respectively, when both firms produce \(\underline{q}\). They are given as follows:

$$\underline{D}=(\gamma -\mu \underline{q})(\overline{\theta }-\underline{\theta }),$$
$$\underline{CS}=\int _{\underline{\theta }}^{\overline{\theta }} (\theta \underline{q}-\alpha \underline{q})d\theta =(\overline{\theta }-\underline{\theta })(\frac{\overline{\theta }+\underline{\theta }}{2}-\alpha )\underline{q},$$
$$\underline{SW}=\underline{CS}-(\gamma -\mu \underline{q})(\overline{\theta }-\underline{\theta })=(\overline{\theta }-\underline{\theta })((\frac{\overline{\theta }+\underline{\theta }}{2}-\alpha +\mu )\underline{q}-\gamma ).$$

Denote by \(\Pi _1\), \(\Pi _2\), \(\Pi\), D, CS and SW, respectively, the brown firm’s profit, the green firm’s profit, the industry profit, the environmental damage, consumers’ surplus and the social welfare. Result 3 gives their general expressions. Whether in the partial information label case or in the complete information one, Lemmas 2 and 3 show that either both firms produce \(\underline{q}\) or one firm remains brown and the other firm becomes green.

Result 3

The general expression of firms’ profits, Industry profit, environmental damage, consumers’ surplus and the social welfare at price equilibrium when one firm produces \(\underline{q}\) and the other firm produces \(q\ge \underline{q}\) are given in Table 2.

Table 2 The firms’ profits, the industry profit, the environmental damage, the consumers’ surplus and the social welfare when one firm produces \(\underline{q}\) and the other q

1.3 Proof of Result 3

We distinguish three cases:

  1. 1.

    When \(\alpha \le 2\underline{\theta }-\overline{\theta }\), as proved in Result 1, only the green firm is active. The expressions of firms’ profits, industry profit, environmental damage, consumers’ surplus and the social welfare, for a given q produced by the green firm, are as follows:

    $$\Pi _2=(\underline{\theta }-\alpha )(\overline{\theta }-\underline{\theta })\Delta q-\beta \Delta q^2=\beta (\overline{\delta }_L-\Delta q)\Delta q,$$
    $$\Pi _{1}=0,$$
    $$\Pi =\Pi _1+\Pi _2=\beta (\overline{\delta }_L-\Delta q)\Delta q,$$
    $$D=(\gamma -\mu q)(\overline{\theta }-\underline{\theta })=\underline{D}-\mu \Delta q(\overline{\theta }-\underline{\theta }),$$
    $$\begin{aligned}CS&=\int _{\underline{\theta }}^{\overline{\theta }}(\theta q-\alpha \underline{q}-\underline{\theta }\Delta q)d\theta \\&=\frac{(\overline{\theta }-\underline{\theta })^2}{2}q-(\alpha -\underline{\theta })(\overline{\theta }-\underline{\theta })\underline{q}\\&=\underline{CS}+\frac{(\overline{\theta }-\underline{\theta })^2}{2}\Delta q,\end{aligned}$$
    $$\begin{aligned}SW&=CS+\Pi _1+\Pi _{2}-(\gamma -\mu q)(\overline{\theta }-\underline{\theta })\\ &=(\overline{\theta }-\underline{\theta })[(\frac{\overline{\theta }+\underline{\theta }}{2}-\alpha -\mu ) q-\gamma ]-\beta \Delta q^2, \\& =\underline{SW}+\beta \Delta q(2\delta ^*_L-\Delta q).\end{aligned}$$
  2. 2.

    When \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\) and one firm is green, i.e. \(q>\underline{q}\), the expressions of firms’ profits, industry profit, environmental damage, consumers’ surplus and the social welfare for a given q are as follows:

    $$\Pi _2=\frac{1}{9}(2\overline{\theta }-\underline{\theta }-\alpha )^2\Delta q-\beta \Delta q^2=\beta (\overline{\delta }_I-\Delta q)\Delta q,$$
    $$\Pi _{1}=\frac{1}{9}(\alpha +\overline{\theta }-2\underline{\theta })^2\Delta q=\beta \underline{\delta }_I\Delta q,$$
    $$\Pi =\Pi _1+\Pi _2=\beta (\overline{\delta }_I+\underline{\delta }_I-\Delta q)\Delta q,$$
    $$\begin{aligned}D=&(\gamma -\mu \tilde{q})\frac{2\overline{\theta }-\underline{\theta }-\alpha }{3}+(\gamma -\mu \underline{q})\\ &\frac{\alpha +\overline{\theta }-2\underline{\theta }}{3}=\underline{D}-\mu \Delta q\frac{2\overline{\theta }-\underline{\theta }-\alpha }{3},\end{aligned}$$
    $$\begin{aligned}CS=&\int _{\underline{\theta }}^{\hat{\theta }}(\theta \underline{q}-\frac{1}{3}(2\alpha \underline{q}+\alpha q+(\overline{\theta }-2\underline{\theta })\Delta q))d\theta \\ &+\int _{\hat{\theta }}^{\overline{\theta }}(\theta q-\frac{1}{3}(\alpha \underline{q}+2\alpha q+(2\overline{\theta }-\underline{\theta })\Delta q))d\theta ,\end{aligned}$$
    $$=\underline{CS}+\Delta q(\frac{(\underline{\theta }-\alpha )(2\overline{\theta }-\underline{\theta }-\alpha )}{6}-\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9}),$$
    $$SW=CS+\Pi _1+\Pi _{2}-(\gamma -\mu q)(\frac{2\overline{\theta }-\underline{\theta }-\alpha }{3})-(\gamma -\mu \underline{q})\frac{\alpha +\overline{\theta }-2\underline{\theta }}{3},$$
    $$=\underline{SW}+\beta \Delta q(2\delta ^*_I-\Delta q).$$
  3. 3.

    When \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\) and both firms are brown then \(\Pi _1=\Pi _2=\Pi =0\); \(D=\underline{D}\), \(CS=\underline{CS}\) and \(SW=\underline{SW}\). The general expression established in the previous case are still valid in this case with \(\Delta q=0\). \(\blacksquare\)

Result 4

In the partial information label case, depending on the marginal cost \(\alpha\) and the environmental sensitivity to quality \(\mu\), at the SPNE, the firms’ profits, the industry profit, the environmental damage, consumers’ surplus and the social welfare are given in Table 3 for low \(\alpha\) and Table 4 for intermediate \(\alpha\).

Table 3 The SPNE outcome for low \(\alpha\) with a partial information label
Table 4 The SPNE outcome for intermediate \(\alpha\) with a partial information label

1.4 Proof of Result 4

We substitute \(\Delta q\) in the general expressions given in Table 2 by the values provided in Lemma 2. \(\blacksquare\)

1.5 Proof of Lemma 3

Using Result 1, we distinguish two cases:

  • If  \(\alpha \le 2\underline{\theta }-\overline{\theta }\), firms’ profits are given by:

    $$\Pi _1=-\beta (q_1-\underline{q})^2,$$
    $$\Pi _2=(\underline{\theta }-\alpha )(\overline{\theta }-\underline{\theta })(q_2-q_1)-\beta (q_2-\underline{q})^2.$$

    We check that \(\frac{\partial \Pi _1}{\partial q_1}=-2\beta (q_1-\underline{q})<0\). Thus, Firm 1 chooses \(q^*_1=\underline{q}\). We check that \(\Pi _2\) is concave down with respect to \(q_2\) and that it is maximized at \(q^*_2=\frac{\overline{\delta }_L}{2}+\underline{q}\).

  • If  \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\), firms’ profits are given by:

    $$\Pi _1=\frac{1}{9}(2\underline{\theta }-\overline{\theta }-\alpha )^2(q_2-q_1)-\beta (q_1-\underline{q})^2,$$
    $$\Pi _2=\frac{1}{9}(2\overline{\theta }-\underline{\theta }-\alpha )^2(q_2-q_1)-\beta (q_2-\underline{q})^2.$$

    We check that \(\frac{\partial \Pi _1}{\partial q_1}=-\frac{1}{9}(2\underline{\theta }-\overline{\theta }-\alpha )^2-2\beta (q_1-\underline{q})<0\). Thus, Firm 1 chooses \(q^*_1=\underline{q}\). We check that \(\Pi _2\) is concave down with respect to \(q_2\) and that it is maximized at \(q^*_2=\frac{\overline{\delta }_I}{2}+\underline{q}\). \(\blacksquare\)

Result 5

In the complete information label case, depending on the marginal cost \(\alpha\), at the SPNE, the firms’ profits, the industry profit, the environmental damage, consumers’ surplus and the social welfare are given in Table 5.

Table 5 The SPNE outcome with a complete information label

1.6 Proof of Result 5

We substitute \(\Delta q\) in the general expressions given by Table 2 by the values provided in Lemma 3. \(\blacksquare\)

Denote by \(SW^p\), \(SW^c\), the social welfare with a partial and complete information label, respectively. Denote by \(\Pi ^p_2\) and \(\Pi ^c_2\), the green firm profit with a partial and complete information label, respectively.

1.7 Proof of Proposition 1

We start by comparing the social welfare in both cases:

  • If \(\alpha \le 2\underline{\theta }-\overline{\theta }\), then

    • if \(\mu <\frac{3\underline{\theta }-\overline{\theta }}{2}-\alpha\), then \({SW}^p-{SW}^c=\beta (\delta ^*_L-\frac{\overline{\delta }_L}{2})^2>0\).

    • if \(\mu >\frac{3\underline{\theta }-\overline{\theta }}{2}-\alpha\), then \({SW}^p-{SW}^c=\beta \overline{\delta }_L(\delta ^*_L-\frac{3}{4}\overline{\delta }_L)>0\) as \(\delta ^*_L>\overline{\delta }_L\).

  • If \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\)

    • if \(\mu <\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}\), then \({SW}^p-{SW}^c=-\beta \overline{\delta }_I(\delta ^*_I-\frac{\overline{\delta }_I}{4})>0\) as \(\delta ^*_I<0\) when \(\mu <\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}\).

    • if \(\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}<\mu <\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then \({SW}^p-{SW}^c=\beta (\delta ^*_I-\frac{\overline{\delta }_I}{2})^2>0\).

    • if \(\mu >\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then \({SW}^p-{SW}^c=\beta \overline{\delta }_I(\delta ^*_I-\frac{3}{4}\overline{\delta }_I)>0\) as \(\delta ^*_I>\overline{\delta }_I\).

We now move to the comparison of the green firm profits

  • If \(\alpha \le 2\underline{\theta }-\overline{\theta }\), then

    • if \(\mu <\frac{3\underline{\theta }-\overline{\theta }}{2}-\alpha\), then \(\Pi ^p_2-\Pi ^c_2=-\beta (\delta ^*_L-\frac{\overline{\delta }_L}{2})^2<0\).

    • if \(\mu >\frac{3\underline{\theta }-\overline{\theta }}{2}-\alpha\), then \(\Pi ^p_2-\Pi ^c_2=-\beta \frac{(\overline{\delta }_L)^2}{4}<0\).

  • If \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\), then

    • if \(\mu <\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}\), then \(\Pi ^p_2-\Pi ^c_2=-\beta \frac{(\overline{\delta }_I)^2}{4}<0\).

    • if \(\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}<\mu <\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then \(\Pi ^p_2-\Pi ^c_2=-\beta (\delta ^*_I-\frac{\overline{\delta }_I}{2})^2<0\).

    • if \(\mu >\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then \(\Pi ^p_2-\Pi ^c_2= -\beta \frac{(\overline{\delta }_I)^2}{4}<0\). \(\blacksquare\)

1.8 Proof of Proposition 2

The cases that appeared when the label is a partial information label have to be distinguished here:

  • If \(\alpha \le 2\underline{\theta }-\overline{\theta }\), then

    • if \(\mu <\frac{3\underline{\theta }-\overline{\theta }}{2}-\alpha\), then we easily prove that \(\delta ^*_L>\frac{\overline{\delta }_L}{2}\). Indeed, \(\delta ^*_L-\frac{\overline{\delta }_L}{2}=\frac{(\overline{\theta }-\underline{\theta })(\overline{\theta }-\underline{\theta }+2\mu )}{4\beta }>0\).

    • if \(\mu >\frac{3\underline{\theta }-\overline{\theta }}{2}-\alpha\), then obviously \(\overline{\delta }_L>\frac{\overline{\delta }_L}{2}\).

  • If \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\), then

    • if \(\mu <\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}\), then a partial information labeling authority does not offer any label, i.e. \(\Delta \tilde{q}=0\). Thus, \(\Delta \tilde{q}=0<\frac{\overline{\delta }_I}{2}\).

    • if \(\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}<\mu <\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then \(\delta ^*_I>\frac{\overline{\delta }_I}{2}\) if and only if \(\mu >\frac{\alpha -\underline{\theta }}{2}\).

    • if \(\mu >\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then obviously \(\overline{\delta }_I>\frac{\overline{\delta }_I}{2}\). \(\blacksquare\)

As for the environmental damage, we notice from Table 2 that the environmental damage is linearly and negatively related to the green quality. Denote by \(D^p\) and \(D^c\), the environmental damage with a partial and complete information label, respectively, we have:

  • If \(\alpha \le 2\underline{\theta }-\overline{\theta }\), then the partial information labeling criteria are more stringent than the green quality of the complete information label and consequently \(D^p-D^c<0\).

  • If \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\), then the partial information labeling criteria are more stringent than the green quality of the complete information label if and only if \(\mu >\frac{\alpha -\underline{\theta }}{2}\) in which case, we have \(D^p-D^c>0\).\(\blacksquare\)

Denote by \(\Pi ^p_1\) and \(\Pi ^c_1\), the brown firm profit with a partial and complete information label, respectively. Recall that \(D^p\) and \(D^c\) denote the environmental damage with a partial and complete information label, respectively.

1.9 Proof of Proposition 3

The brown firm profit is null when \(\alpha <2\underline{\theta }-\overline{\theta }\) as consumers only buy the green product whatever the label’s type. When \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\) then the profit of the brown firm is positively and linearly related to \(\Delta q\). Thus, the brown firm prefers that the green firm offers the highest possible quality. Using the results of Proposition 2, we have:

  • If \(\mu >\frac{\alpha -\underline{\theta }}{2}\), then \(\Pi ^p_1-\Pi ^c_1>0\).

  • If \(\mu <\frac{\alpha -\underline{\theta }}{2}\), then \(\Pi ^p_1-\Pi ^c_1<0\). \(\blacksquare\)

1.10 Proof of Proposition 4

Denote by \(CS^p\) and \(CS^c\), consumers’ surplus with a partial and complete information label, respectively.

  • If \(\alpha \le 2\underline{\theta }-\overline{\theta }\), then consumers’ surplus is positively and linearly related to \(\Delta q\) as shown in Table 2. As the labeling criteria with a partial information label are more stringent than the green quality of the complete information label then \({CS}^p-{CS}^c>0\)

  • If \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\), then consumers’ surplus is linearly related to \(\Delta q\) as shown in Table 2. However, the relationship can be positive or negative depending on the sign of \(\frac{(\underline{\theta }-\alpha )(2\overline{\theta }-\underline{\theta }-\alpha )}{6}-\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9}\). We show that if \(2\underline{\theta }-\overline{\theta }<\alpha <\tilde{\alpha }\), then \(\frac{(\underline{\theta }-\alpha )(2\overline{\theta }-\underline{\theta }-\alpha )}{6}-\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9}>0\) and if \(\tilde{\alpha }<\alpha <2\overline{\theta }-\underline{\theta }\), then\(\frac{(\underline{\theta }-\alpha )(2\overline{\theta }-\underline{\theta }-\alpha )}{6}-\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9}<0\). Thus,

    • If \(\mu <\frac{\alpha -\underline{\theta }}{2}\), then \(\alpha >\tilde{\alpha }\). Thus, \(CS^p-CS^c>0\) as the partial information label is less stringent than the green quality of the complete information label and as consumers’ surplus is negatively related to \(\Delta q\).

    • If \(\mu >\frac{\alpha -\underline{\theta }}{2}\) and \(\alpha <\tilde{\alpha }\), then \(CS^p-CS^c>0\) as the partial information label is more stringent than the green quality of the complete information label and as consumers’ surplus is positively related to \(\Delta q\).

    • If \(\mu >\frac{\alpha -\underline{\theta }}{2}\) and \(\alpha >\tilde{\alpha }\), then \(CS^p-CS^c<0\) as the partial information label is more stringent than the green quality of the complete information label and as consumers’ surplus is negatively related to \(\Delta q\). \(\blacksquare\)

1.11 Proof of Proposition 5

Denote by \(\Pi ^p\) and \(\Pi ^c\), the industry profit with a partial and complete information label, respectively.

  • If \(\alpha \le 2\underline{\theta }-\overline{\theta }\), then the industry profit is equal to the green firm profit and is higher with a complete information label as shown in Proposition 1.

  • If \(2\underline{\theta }-\overline{\theta }<\alpha <2\overline{\theta }-\underline{\theta }\), then

    • if \(\mu <\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}\), then \(\Pi ^p-\Pi ^c=-\beta (\underline{\delta }_I+\frac{\overline{\delta }_I}{2})\frac{\overline{\delta }_I}{2}<0\).

    • if \(\frac{5\alpha -4\overline{\theta }-\underline{\theta }}{6}<\mu <\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then \(\Pi ^p-\Pi ^c=\beta (\delta ^*_I-\frac{\overline{\delta }_I}{2})(\frac{\overline{\delta }_I}{2}+\underline{\delta }_I-\delta ^*_I)\). We have that \(\Pi ^p-\Pi ^c>0\) if and only if \(\frac{\overline{\delta }_I}{2}<\delta ^*_I<\frac{\overline{\delta }_I}{2}+\underline{\delta }_I\) which is equivalent to \(\frac{\alpha -\underline{\theta }}{2}<\mu <\frac{2}{3}\frac{(\alpha +\overline{\theta }-2\underline{\theta })^2}{2\overline{\theta }-\underline{\theta }-\alpha }+\frac{\alpha -\underline{\theta }}{2}\).

    • if \(\mu >\frac{4\overline{\theta }-5\underline{\theta }+\alpha }{6}\), then \(\Pi ^p-\Pi ^c=\beta \frac{\overline{\delta }_I}{2}(\underline{\delta }_I-\frac{\overline{\delta }_I}{2})\). We have that \(\Pi ^p-\Pi ^c>0\) if and only if \(\underline{\delta }_I>\frac{\overline{\delta }_I}{2}\) which is equivalent to \(\alpha ^2-2\alpha (5\underline{\theta }-4\overline{\theta })-2\overline{\theta }^2+7\underline{\theta }^2-4\overline{\theta }\underline{\theta }>0\). The quadratic expression is positive if \(\alpha >\overline{\alpha }\) and negative if \(\alpha <\overline{\alpha }\). Thus,

      • if \(\alpha <\overline{\alpha }\), then \(\underline{\delta }_I<\frac{\overline{\delta }_I}{2}\) and \(\Pi ^p-\Pi ^c<0\).

      • if \(\alpha >\overline{\alpha }\), then \(\underline{\delta }_I>\frac{\overline{\delta }_I}{2}\) and \(\Pi ^p-\Pi ^c>0\). \(\blacksquare\)

Remark on the difference of consumers’ surplus and difference of industry profits under the two types of labels

Denote by \(\Delta CS(\alpha )=CS^p(\alpha )-CS^c(\alpha )\) the difference between consumers’ surpluses with a partial information label and a complete information label at equilibrium and denote by \(\Delta \Pi (\alpha )=\Pi ^p(\alpha )-\Pi ^c(\alpha )\) the difference between industry profits with a partial information label and a complete information label at equilibrium. Using Results 4 and 5, the expressions of \(\Delta CS(\alpha )\) and \(\Delta \Pi (\alpha )\) for \(\frac{\overline{\theta }-\underline{\theta }}{2}<\mu <\frac{3\underline{\theta }-\overline{\theta }}{2}\) are, respectively, given by:

$$\Delta CS(\alpha )={\left\{ \begin{array}{ll} \frac{(\overline{\theta }-\underline{\theta })^3}{8\beta }(\overline{\theta }-\underline{\theta }+2\mu ) \quad \hbox { if } \quad \alpha<\frac{3\underline{\theta }-\overline{\theta }}{2}-\mu ,\\ \frac{(\overline{\theta }-\underline{\theta })^3}{4\beta }(\underline{\theta }-\alpha ) \quad \hbox { if } \quad \frac{3\underline{\theta }-\overline{\theta }}{2}-\mu<\alpha<2\underline{\theta }-\overline{\theta },\\ \frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18\beta }(\frac{(\overline{\theta }-\alpha )(2\overline{\theta }-\underline{\theta }-\alpha )}{6}-\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9}) \quad \hbox { if } \quad 2\underline{\theta }-\overline{\theta }<\alpha<6\mu -4\overline{\theta }+5\underline{\theta },\\ (\frac{(2\overline{\theta }-\underline{\theta }-\alpha )(4\overline{\theta }+\underline{\theta }-5\alpha +6\mu ))}{36\beta }-\frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18\beta })(\frac{(\overline{\theta }-\alpha )(2\overline{\theta }-\underline{\theta }-\alpha )}{6}-\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9}) \quad \hbox { if } \quad 6\mu -4\overline{\theta }+5\underline{\theta }<\alpha <\frac{6\mu +4\overline{\theta }+\underline{\theta }}{5} ,\\ -\frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18\beta }(\frac{(\underline{\theta }-\alpha )(2\overline{\theta }-\underline{\theta }-\alpha )}{6}-\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9}) \quad \hbox { if } \quad \alpha >\frac{6\mu +4\overline{\theta }+\underline{\theta }}{5}. \end{array}\right. }$$
$$\Delta \Pi (\alpha )={\left\{ \begin{array}{ll} -\frac{(\overline{\theta }-\underline{\theta })^2}{16\beta }(\overline{\theta }-\underline{\theta }+2\mu )^2 \quad \hbox { if } \quad \alpha<\frac{3\underline{\theta }-\overline{\theta }}{2}-\mu ,\\ -\frac{(\overline{\theta }-\underline{\theta })^2}{4\beta }(\underline{\theta }-\alpha )^2 \quad \hbox { if } \quad \frac{3\underline{\theta }-\overline{\theta }}{2}-\mu<\alpha<2\underline{\theta }-\overline{\theta },\\ \frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18\beta }(\frac{(\alpha +\overline{\theta }-2\underline{\theta })^2}{9}-\frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18}) \quad \hbox { if } \quad 2\underline{\theta }-\overline{\theta }<\alpha<6\mu -4\overline{\theta }+5\underline{\theta },\\ (\frac{(2\overline{\theta }-\underline{\theta }-\alpha )(4\overline{\theta }+\underline{\theta }-5\alpha +6\mu ))}{36}-\frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18})(-\frac{(2\overline{\theta }-\underline{\theta }-\alpha )(4\overline{\theta }+\underline{\theta }-5\alpha +6\mu )}{36\beta }+\frac{(\overline{\theta }-2\underline{\theta }+\alpha )^2}{9\beta }+\frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18\beta }) \quad \hbox { if } \quad 6\mu -4\overline{\theta }+5\underline{\theta }<\alpha <\frac{6\mu +4\overline{\theta }+\underline{\theta }}{5} ,\\ -\frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18\beta }(\frac{(\alpha +\overline{\theta }-2\underline{\theta })^2}{9}+\frac{(2\overline{\theta }-\underline{\theta }-\alpha )^2}{18}) \quad \hbox { if } \quad \alpha >\frac{6\mu +4\overline{\theta }+\underline{\theta }}{5}. \end{array}\right. }$$

Figure 2 gives the curves of \(\Delta CS(\alpha )\) and \(\Delta \Pi (\alpha )\) in the particular case where \(\overline{\theta }=2.5\), \(\underline{\theta }=1.5\), \(\beta =1\) and \(\mu =0.75\).

Fig. 2
figure 2

Difference of consumers’ surplus and difference of industry profit curves for \(\overline{\theta }=2.5\), \(\underline{\theta }=1.5\), \(\beta =1\) and \(\mu =0.75\)

Appendix B

Result 6

Under uncovered market, at the SPNE of the complete information label, qualities, prices, profits, Consumers’ Surplus and Social Welfare are given as follows:

  • Qualities: \(\hat{q}_1^C = \frac{(\overline{\theta } - \alpha )^2 k^2 (4k - 7)}{(4k -1)^3}\), \(\hat{q}_2^C = \frac{(\overline{\theta } - \alpha )^2 k^3 (4k - 7)}{(4k -1)^3}.\)

  • Prices: \(\hat{p}_1^C = \frac{(\overline{\theta } - \alpha )^2 k^2 (4k - 7) (\overline{\theta } (k-1) + 3 \alpha k)}{(4k -1)^4}\), \(\hat{p}_2^C = \frac{(\overline{\theta } - \alpha )^2 k^3 (4k - 7)(2 \overline{\theta } (k-1) + \alpha (2k +1))}{(4k -1)^4}\)

  • Profits: \(\hat{\pi }_1^C = \frac{(\overline{\theta } - \alpha )^4 k^3 (4k - 7)(4 k^2 -3 k +2)}{2(4k -1)^6}\), \(\hat{\pi }_2^C = \frac{8 (\overline{\theta } - \alpha )^4 k^3 (4k - 7)(4 k^2 -3 k +2)}{(4k -1)^6}.\)

  • Consumers’ Surplus: \(\widehat{CS}^C = \frac{(\overline{\theta } - \alpha )^4 k^4 (4k - 7)(4 k +5)}{2(4k -1)^5}\).

  • Social Welfare: \(\widehat{SW}^C = \frac{(\overline{\theta } - \alpha )^4 k^3 (4k - 7)}{(4k -1)^5} (k(2k +1) + \frac{17 (4k^2 -3 k +2}{2(4k-1)})\).

1.1 Proof of Result 6

Actually the calculation of the quality choice amounts to the solution obtained by Liao [6] replacing \(\overline{\theta }\) by \(\overline{\theta } - \alpha\).

We solve the game by backward induction, beginning with the price step.

Profits are given as follows:

$${\left\{ \begin{array}{ll} \pi _1 = (p_1 - \alpha q_1)(\frac{p_2 - p_1}{q_2 - q_1} - \frac{p_1}{q_1}) \\ \pi _2 = (p_2 - \alpha q_2)(\overline{\theta } - \frac{p_2 - p_1}{q_2 - q_1}). \end{array}\right. }$$

First-Order Conditions yield the equilibrium prices:

$$\begin{aligned} {\left\{ \begin{array}{ll} p_1 = \alpha q_1 + \frac{(\overline{\theta } - \alpha ) q_1 (q_2 - q_1)}{4 q_2 - q_1} \\ p_2 = \alpha q_2 + \frac{2 (\overline{\theta } - \alpha ) q_2 (q_2 - q_1)}{4 q_2 - q_1} \end{array}\right. } \end{aligned}$$
(1)

At price equilibrium, the profits, as function of qualities, are given as follows:

$${\left\{ \begin{array}{ll} \pi _1 = \frac{(\overline{\theta } - \alpha )^2 q_1 q_2 (q_2 - q_1)}{(4 q_2 - q_1)^2} - (1/2)q_1^2 \\ \pi _2 = \frac{4(\overline{\theta } - \alpha )^2 q_2^2 (q_2 - q_1)}{(4 q_2 - q_1)^2} - (1/2) q_2 ^2 \end{array}\right. }$$

The expressions above are exactly the expressions of the profits obtained by Liao [6] replacing \(\overline{\theta }\) by \(\overline{\theta } - \alpha\). Thus the equilibrium qualities are given by:

$${\left\{ \begin{array}{ll} q_1 = \frac{(\overline{\theta } - \alpha )^2 k^2 (4k - 7)}{(4k - 1)^3} \\ q_2= \frac{(\overline{\theta } - \alpha )^2 k^3(4k - 7)}{(4k - 1)^3} \end{array}\right. }$$

Replacing qualities by their values in the equilibrium prices, then in the profits, we obtain the expressions in the result.

As for the consumers’ surplus, we have to do more effort before reaching the result.

Denote by \(\theta _{0,1} (\overline{\theta }, \alpha )\) and \(\theta _{1,2} (\overline{\theta }, \alpha )\) the marginal consumers, indifferent, respectively, between no purchase and buying product 1, and between product 1 and 2, at the SPNE, as function of the highest type \(\overline{\theta }\) and the cost parameter \(\alpha\). The solution obtained by Liao [6] corresponds to \(\alpha = 0\). Simple calculations yield:

$$\begin{aligned} {\left\{ \begin{array}{ll} \theta _{0,1} (\overline{\theta }, \alpha ) = \alpha + \theta _{0,1} (\overline{\theta } - \alpha , 0) \\ \theta _{1,2} (\overline{\theta }, \alpha ) = \alpha + \theta _{1,2} (\overline{\theta } - \alpha , 0) \end{array}\right. } \end{aligned}$$
(2)

The consumers’ surplus is given by:

$$CS = \int _{\theta _{0,1} (\overline{\theta }, \alpha )}^{\theta _{1,2} (\overline{\theta }, \alpha )} (\theta q_1 - p_1) d\theta + \int _{\theta _{1,2} (\overline{\theta }, \alpha )}^{\overline{\theta }} (\theta q_2 - p_2) d\theta ,$$

which may be re-written as (\(D_i\) standing for the firm i’s demand):

$$\begin{aligned}CS = &(q_1/2) \left( \left( \theta _{1,2} (\overline{\theta }, \alpha ) \right) ^2 - \left( \theta _{0,1} (\overline{\theta }, \alpha ) \right) ^2\right) - p_1 D_1 \\ &+ (q_2/2) \left( \overline{\theta }^2 - \left( \theta _{1,2} (\overline{\theta }, \alpha )\right) ^2\right) - p_2 D_2.\end{aligned}$$

Rearranging the first and third terms using the formula \(A^2 - B^2 = (A-B)(A+B)\), then using the relations between the marginal consumers given by equations (2), we obtain:

$$\begin{aligned} CS = (q_1/2) \left( \left( \theta _{1,2} (\overline{\theta } - \alpha , 0) \right) ^2 - \left( \theta _{0,1} (\overline{\theta } - \alpha , 0) \right) ^2 \right) - (p_1 - \alpha q_1) D_1 \\ + (q_2/2) \left( \overline{\theta }^2 - \left( \theta _{1,2} (\overline{\theta } - \alpha , 0)\right) ^2 \right) - (p_2 - \alpha q_2) D_2. \end{aligned}$$

The second and fourth terms correspond, respectively, to \(- \pi _1 (\overline{\theta }, \alpha )\) and \(- \pi _2 (\overline{\theta }, \alpha )\). But the profits at the SPNE with any \(\alpha\) may be related to the profits with \(\alpha = 0\) obtained by Liao [6], as follows:

$$\begin{aligned} {\left\{ \begin{array}{ll} \pi _1 (\overline{\theta }, \alpha ) = \pi _1 (\overline{\theta } - \alpha , 0) \\ \pi _2 (\overline{\theta }, \alpha ) = \pi _2 (\overline{\theta } - \alpha , 0) \end{array}\right. } \end{aligned}$$
(3)

Hence, the consumers’ surplus with any \(\alpha\) can be related to the consumers’ surplus with \(\alpha = 0\) obtained by Liao [6] as follows:

\(CS (\overline{\theta }, \alpha ) = CS (\overline{\theta } - \alpha , 0),\) which gives the expression provided in the result.

As for SW, we have \(SW (\overline{\theta }, \alpha ) = CS (\overline{\theta }, \alpha ) + \pi _1 (\overline{\theta }, \alpha ) + \pi _2 (\overline{\theta }, \alpha ).\) Using the results which have just been proved on CS and the profits, we have: \(SW(\overline{\theta }, \alpha ) = SW(\overline{\theta }- \alpha , 0),\) thus the expression.

\(\blacksquare\)

Result 7

Under the partial information label with uncovered market, the labeling criteria, the qualities, the prices, the profits, the Consumers’ Surplus and the Social Welfare are given as follows:

  • Labeling criteria: \(\hat{q} = \frac{3 (\overline{\theta }- \alpha )^2}{8}.\)

  • Qualities: \(\hat{q}_2^P = \hat{q}\) and \(\hat{q}_1^P = 0\).

  • Prices: \(\hat{p}_1^P = 0\), \(\hat{p}_2^P= (3/16) (\overline{\theta }- \alpha )^2 (\overline{\theta } + \alpha )\).

  • Profits: \(\hat{\pi }_1^P = 0\), \(\hat{\pi }_2^P = (3/128) (\overline{\theta }- \alpha )^4\).

  • Consumers’ Surplus: \(\widehat{CS}^P= (3/64) (\overline{\theta }- \alpha )^4\).

  • Social Welfare: \(\widehat{SW}^P = (9/128) (\overline{\theta }- \alpha )^4\).

1.2 Proof of Result 7

We first determine the equilibrium qualities for a given level of labeling criteria.

Using the equilibrium prices obtained in Equations (1), we build a payment matrix with \(\{0, \tilde{q} \}\) as the strategy space of each firm. Simple calculations yield the equilibrium qualities for given \(\tilde{q}\):

  • If  \(\tilde{q} > \frac{(\overline{\theta } - \alpha )^2}{2}\), then the quality equilibrium is given by (0, 0).

  • If  \(\tilde{q} \le \frac{(\overline{\theta } - \alpha )^2}{2}\), then there are two quality equilibria: \((0, \tilde{q})\) and \((\tilde{q}, 0)\).

The labeling criteria must maximize the Social Welfare at quality equilibrium:

$$SW = {\left\{ \begin{array}{ll} (3/8) (\overline{\theta }- \alpha )^2 \tilde{q} - (1/2) \tilde{q}^2 &{} \text{ if } \tilde{q} \le \frac{(\overline{\theta } - \alpha )^2}{2}\\ 0 &{} \text{ otherwise } \end{array}\right. }$$

The maximization of SW above yields the value of \(\tilde{q}= \frac{3 (\overline{\theta }- \alpha )^2}{8}\). Replacing \(\tilde{q}\) by the obtained value in the equilibrium qualities, then in the prices, the profits, the Consumers’ Surplus and the Social Welfare, we obtain the expressions given in the result. \(\blacksquare\)

1.3 Proof of Proposition 6

The proof follows from straightforward calculations using Results 6 and 7. \(\blacksquare\)

1.4 Proof of Proposition 7

The social welfare at equilibrium under the partial information label and covered market \(SW^P\) is obtained from Table 4 in Result 4, substituting \(\underline{\theta }\), \(\mu\) and \(\underline{q}\) by 0 and \(\beta\) by \(\frac{1}{2}\), as follows:

$$SW^P={\left\{ \begin{array}{ll} 0 &{} \text{ if } \alpha >\frac{4}{5}\overline{\theta },\\ \frac{1}{2}(\frac{(2\overline{\theta }-\alpha )(4\overline{\theta }-5\alpha )}{18})^2 &{} \text{ if } \alpha <\frac{4}{5}\overline{\theta }.\\ \end{array}\right. }$$

Simple comparisons with the expression of \(\widehat{SW}^P\) at equilibrium under uncovered market provided in Result 7 lead to the proposition conclusions. \(\blacksquare\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazzai, H., Lahmandi-Ayed, R. Ecolabel: Is More Information Better?. Environ Model Assess 27, 505–524 (2022). https://doi.org/10.1007/s10666-021-09791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09791-5

Keywords

Mathematics Subject Classification

Navigation