Skip to main content

Advertisement

Log in

Dispersion of Particulate Matter and Sulphur Oxides from Thermal Power Plant: a Case Study

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Coal-fired thermal plants are known to pollute the atmosphere with emission of many greenhouse gases and particulate matter. The power generation from these thermal plants cannot be stopped completely because it forms the backbone of the Indian grid power supply. It is necessary to study the dispersion patterns of pollutants that affect the health of the people. The dispersion patterns are location-specific since they depend on local meteorological conditions. In this study, the dispersion of particulate matter (PM) and sulphur dioxide (SO2) from a power plant with a 275 m-high stack are studied under different atmospheric boundary layers (ABLs) of neutral, stable and unstable conditions up to a distance of 30 km from the stack. The plume of the PM spreads under all conditions. During some parts of the day, PM settles around the stack while at other times PM keeps suspending in the air for the full distance under study. Sulphur dioxide dilutes to concentrations below the detection limits in 12–13 km from the stack for neutral and unstable boundary layers whereas for the stable boundary layer, the dispersion is up to 30 km. The 24-h weighted average concentration of sulphur dioxide, at 10-m height from the ground, is 14.2 μg/m3 at a distance of 25 km from the power plant, which is comparable with the value of 9.2 μg/m3 measured at the Air Quality Stations located around the same distance. Based on the results, policy changes that need to be implemented are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

All data generated and analysed during this study are included in this manuscript.

References

  1. Yong, Xu., Jianlin, Hu., Ying, Qi., Hao, H., Wang, D., & Zhang, H. (2015). “Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China” Sci. Tot. Environ., 595, 505–514.

    Google Scholar 

  2. Gibson, M. D., Kundu, S., & Satish, M. (2013). Dispersion model evaluation of PM2.5, NOX and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmospheric Pollution Research, 4, 157–167.

    Article  CAS  Google Scholar 

  3. Wiatros-Motyka, M. (2019). NOx control for high-ash coal-fired power plants in India. Clean Energy, 3(1), 24–33. https://doi.org/10.1093/ce/zky018

    Article  Google Scholar 

  4. Backes, C. H., Nelin, T., Gorr, M. W., & Wold, L. E. (2013). Early life exposure to air pollution: How bad is it? Toxicology Letters, 216, 47–53.

    Article  CAS  Google Scholar 

  5. Cohen et al. (2015). “Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study” Lancet, vol. 389, no. 10082, pp. 1907–1918, 2017, https://doi.org/10.1016/S0140-6736(17)30505-6

  6. Balakrishnan et al. (2019). The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease Study 2017. Lancet Planet. Heal., 3(1), e26–e39. https://doi.org/10.1016/S2542-5196(18)30261-4

    Article  Google Scholar 

  7. Singh, U., Sharma, N., & Mahapatra, S. S. (2016). Environmental life cycle assessment of Indian coal-fired power plants. International Journal of Coal Science & Technology 3(2) 215-225. https://doi.org/10.1007/s40789-016-0136-z

  8. MoF (Ministry of Finance). (2018). Enabling inclusive growth through affordable, reliable and sustainable energy (Chapter 9 of Economic Survey). Retrieved from https://www.indiabudget.gov.in/budget2019-20/economicsurvey/doc/vol1chapter/echap09_vol1.pdf

  9. Central Electricity Authority, CEA ANNUAL REPORT. (2019). Retrieved from http://www.cea.nic.in/reports/annual/annualreports/annual_report-2019.pdf. Last accessed 28th May 2020.

  10. George, K. V., Chalapati Rao, C. V., Labhsetwar, P. K., & Hasan, M. Z. (2002). “Minimum stack height formula for coal based thermal power plant in Northern India” J. Institut. Engineers (India). Environmental Engineering Division, 82, 31–34.

    CAS  Google Scholar 

  11. Central Pollution Control Board, A method to determine the minimum stack height, 1985. Retrieved from http://cpcbenvis.nic.in/scanned%20reports/CUPS-13%20A%20METHOD%20TO%20DETERMINE%20THE%20MINIMUM%20STACK%20HEIGHT.pdf Last accessed 28th May 2020.

  12. Li, X. X., Liu, C. H., Leung, D. Y. C., & Lam, K. M. (2006). “Recent progress in CFD modelling of wind field and pollutant transport in street canyons.” Atmospheric Environment, 40(29), 5640–5658. https://doi.org/10.1016/j.atmosenv.2006.04.055

    Article  CAS  Google Scholar 

  13. Tominaga, Y., & Stathopoulos, T. (2018). CFD simulations of near-field pollutant dispersion with different plume buoyancies. Building and Environment, 131, 128–139. https://doi.org/10.1016/j.buildenv.2018.01.008

    Article  Google Scholar 

  14. Tominaga, Y., & Stathopoulos, T. (2011). CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 340–348. https://doi.org/10.1016/j.jweia.2010.12.005

    Article  Google Scholar 

  15. Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., & Stocker, J. (2004). Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmospheric Environment, 38(7), 1029–1038. https://doi.org/10.1016/j.atmosenv.2003.10.052

    Article  CAS  Google Scholar 

  16. Scargiali, F., Di Rienzo, E., Ciofalo, M., Grisafi, F., & Brucato, A. (2005). “Heavy gas dispersion modelling over a topographically complex mesoscale a cfd based approach,” Process Saf. Environ. Prot., vol. 83, no. 3 B, pp. 242–256, https://doi.org/10.1205/psep.04073

  17. Zhang X. (2009). CFD simulation of neutral ABL flows (Rise-R-1688).

  18. Kozić, M. S., Ristić, S. S., Štetić, K. S., & M., and Polić S. R. (2015). A numerical study for the assessment of pollutant dispersion from kostolac b power plant to viminacium for different atmospheric conditions. Thermal Science, 9(2), 425–434. https://doi.org/10.2298/TSCI130115158K

    Article  Google Scholar 

  19. Sahebnasagh, M. R., Esfahanian, V., Gitipour, S., Ahmadi, G., & Ashrafi, K. (2008). Simulation of plume patterns associated with different atmospheric temperature profiles. Asian Journal of Chemistry, 20(8), 6551–6564.

    CAS  Google Scholar 

  20. Arya, S. P. (1995). “Atmospheric boundary layer and its parameterization,” Wind Clim. Cities, pp. 41–66. https://doi.org/10.1007/978-94-017-3686-2_3

  21. Han, J., Arya, S. P., Shen, S., & Lin, Y. (2000). “An estimation of turbulent kinetic energy and energy dissipation rate based on atmospheric boundary layer similarity theory,” NASA/CR-2000–210298, June, 2000.

  22. Tong, Z., Yang, B., Hopke, P. K., & Zhang, K. M. (2017). Microenvironmental air quality impact of a commercial-scale biomass heating system. Environmental Pollution 220, 1112-1120. https://doi.org/10.1016/j.envpol.2016.11.025

  23. Stopford, P. J. (2002). Recent applications of CFD modelling in the power generation and combustion industries. Applied Mathematical Modelling 26(2) 351-374. https://doi.org/10.1016/S0307-904X(01)00066-X

  24. Silvester, S. A., Lowndes, I. S., & Hargreaves, D. M. (2009). A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions. Atmospheric Environment 43(40) 6415-6424. https://doi.org/10.1016/j.atmosenv.2009.07.006

  25. Dehbi, A. (2006). “Assessment of a new FLUENT model for particle dispersion in turbulent flows” Workshop Proceedings on Benchmarking of CFD. 703–720.

  26. Chen, C. et al. (2010). The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient’s mouth in the indoor environment of dental clinics. Journal of the Royal Society, Interface, 7, 1105–1118.

    Article  Google Scholar 

  27. Gorlé, C., van Beeck, J., Rambaud, P., & Van Tendeloo, G. (2009). CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer. Atmospheric Environment, 43, 673–681.

    Article  Google Scholar 

  28. Gorlé, C., van Beeck, J., & Rambaud, P. (2010). Dispersion in the wake of a rectangular building: Validation of two Reynolds-averaged Navier-Stokes modelling approaches. Boundary-Layer Meteorol., 137, 115–133.

    Article  Google Scholar 

  29. Randerson, D. (2016). “Atmospheric boundary layer.” US Dep. Energy, Tech. Inf. Center, (Technical Report) DOE/TIC, pp. 147–188. https://doi.org/10.4028/www.scientific.net/amm.820.338.

  30. Sugiyama, G., Nasstrom, J. S. (1999). “Method for determining the height of the atmospheric boundary layer,” Lawrence Livermore National Laboratory. 11. 10.5194/acp-11-6837-2011

  31. Golder, D. (1972). “Relations among stability parameters in the surface layer.” Boundary-Layer Meteorol., 3(1), 47–58. https://doi.org/10.1007/BF00769106

    Article  Google Scholar 

  32. Bisht et al. (2016). Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Science of the Total Environment, 573, 894–905. https://doi.org/10.1016/j.scitotenv.2016.08.185

    Article  CAS  Google Scholar 

  33. Govardhan, G., Satheesh, S. K., Nanjundiah, R., Moorthy, K. K., & Babu, S. S. (2017). 2017, “Possible climatic implications of high-altitude black carbon emissions.” Atmospheric Chemistry and Physics, 17(15), 9623–9644. https://doi.org/10.5194/acp-17-9623-2017

    Article  CAS  Google Scholar 

  34. Li, J., Li, S., & Zhou, F. (2015). Effect of moisture in coal dust on filtration and cleaning performance of filters. Physicochem. Probl. Mi., 52, 365–379. https://doi.org/10.5277/ppmp160131

    Article  Google Scholar 

  35. Goyal, P., & Sidhartha. (2004). Modeling and monitoring of suspended particulate matter from Badarpur thermal power station, Delhi. Environ. Model. & Software, 19, 383–390.

    Article  Google Scholar 

  36. Tessum, M. W., & Raynor, P. C. (2017). Effects of spray surfactant and particle charge on respirable coal dust. Safety and Health at Work, 8, 296–305. https://doi.org/10.1016/j.shaw.2016.12.006

    Article  Google Scholar 

  37. Schnelle, K. B., Jr., & Brown, C. A. (2016). Design and application of wet scrubbers (pp. 317–341). Air Pollution Control Technology: CRC Press.

    Google Scholar 

  38. Brauer, H., Varma, Y. B. G. (2012). “Air pollution control equipment” Springer Berlin Heidelberg 3642.67.9064

  39. Kim, K.-D., Hasolli, N., Lee, K.-S., Lee, J.-R., & Park, Y.-O. (2019). Control of fugitive fine coal particulate emissions from coal handling system at coal-fired power plants using a two-stage vortex scrubber. J. Korean Soc. Atmos., 35, 282–293.

    Article  Google Scholar 

  40. Gromaszek, K., Wójcik, W., Kotyra, A., Iskakova, A., Shegebayeva, Z., & Talgatkyzy, I. B. (2016). Modelling and analysis of electrostatic precipitator (ESP) in combustion process. Prz Elektrotechniczn, 92(8), 121–124.

    Google Scholar 

  41. Hao, J.M., Wang, S.X. & Lu, Y.Q. (2009). Handbook on sulfur dioxide pollution control technology in coal combustion. Chemical Industry, Beijing.

  42. Wang, H., Chen, D., Li, Z., Zhang, D., Cai, N., Yang, J., & Wei, G. (2018). SO3 removal from flue gas with Ca(OH)2 in entrained flow reactors. Energ. Fuel., 32, 5364–5373.

    Article  CAS  Google Scholar 

  43. Pan, S.-Y., Wang, P., Chen, Q., Jiang, W., Chu, Y.-H., & Chiang, P.-C. (2017). Development of high-gravity technology for removing particulate and gaseous pollutant emissions: Principles and applications. Journal of Cleaner Production, 149, 540–556.

    Article  CAS  Google Scholar 

  44. Cichowicz, R., Wielgosiński, G., & Fetter, W. (2017). Dispersion of atmospheric air pollution in summer and winter season. Environmental Monitoring and Assessment, 189, 605. https://doi.org/10.1007/s10661-017-6319-2

    Article  CAS  Google Scholar 

  45. Chang T, J., Kao H, M., Wu Y, T. & Huang W, H. (2012) “Transport mechanisms of coarse, fine, and very fine particulate matter in urban street canopies with different building layouts” Journal of the Air & Waste Management Association, 59:2, 196–206, https://doi.org/10.3155/1047-3289.59.2.196

  46. EPA. (2013). https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm, Accessed on July 11, 2021.

  47. Thomas, F. W., Carpenter, S. B., & Gartrell, F. E. (1963). Stacks—How high? Journal of the Air Pollution Control Association, 13(5), 198–204. https://doi.org/10.1080/00022470.1963.10468165

    Article  CAS  Google Scholar 

  48. Ministry of Environment, Forest and Climate Change (2015). Notification (S.O. 3305 (E)., Gazette of India, Extraordinary, Part 2 Section 3, Ministry of Environment, Forest and Climate Change, Government of India, New Delhi. Retrieved from http://moef.gov.in/wp-content/uploads/2017/08/Thermal_plant_gazette_scan.pdf

  49. MoP (Ministry of Power). (2018). Emission norms for thermal power plants, Lok Sabha Starred Question (No.334.) Retrieved from http://164.100.24.220/loksabhaquestions/annex/15/AS334.pdf.

  50. Ministry of Environment and Forests (2009). Notification G.S.R. 826 (E)., Gazette of India, Extraordinary, Part 2 Section 3, Ministry of Environment and Forests, Government of India, New Delhi. Retrieved from http://moef.gov.in/wp-content/uploads/2017/08/826.pdf

  51. Central Electricity Authority. (2019). Norms for installation of FGD for new environmental regulations - 7th December-2015, Retrieved from http://www.cea.nic.in/reports/others/thermal/umpp/fgd_newnorms.pdf. Last accessed 28th May 2020

Download references

Acknowledgements

The authors also acknowledge the help received from SCCL by providing the stack data.

Funding

The authors thank the Ministry of Earth Sciences (Grant Number MoES/16/15/2011-RDEAS (NIAS)), for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

Jayant Singh - contributed in writing computer codes, running programs, data analysis and preparation of the manuscript.

R. Srikanth - contributed in obtaining data from the power plant and prepared the policy suggestions section

Sheela K. Ramasesha - contributed in conceptualizing the problem, supervision, data analysis and manuscript preparation

Corresponding author

Correspondence to Sheela K. Ramasesha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Srikanth, R. & Ramasesha, S.K. Dispersion of Particulate Matter and Sulphur Oxides from Thermal Power Plant: a Case Study. Environ Model Assess 26, 763–778 (2021). https://doi.org/10.1007/s10666-021-09790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09790-6

Keywords

Navigation