Advertisement

Convergence in Sulphur Dioxide (SO2) Emissions Since 1850 in OECD Countries: Evidence from a New Panel Unit Root Test

  • Sakiru Adebola SolarinEmail author
  • Aviral Tiwari
Article
  • 14 Downloads

Abstract

The convergence of air pollution is a key assumption in several environmental impact assessment models and one of the major ingredients for multilateral climate agreements and allocation of emission rights. In this paper, the sulphur dioxide (SO2) emissions’ convergence among 32 OECD countries is examined using the panel stationarity test of Nazlioglu and Karul [1] that provides for smooth breaks, cross-sectional dependency and heterogeneity across the cross-sectional units. For robustness sake, we have also used a panel stationarity test that accounts for sharp breaks. Overall, the findings reveal that there is convergence of SO2 emissions among the OECD countries. The results imply that adjusting the mean value of the relative SO2 emissions trend path should be a key concern of the OECD nations. Moreover, the findings signify that instead of following independent paths in pollution control, the OECD countries are gravitating towards a similar standard of environmental performance. Moreover, the forecast of future relative SO2 emission figures can be based on its past values.

Keywords

Convergence OECD countries Sulphur dioxide (SO2) emissions Structural breaks 

Notes

References

  1. 1.
    Nazlioglu, S., & Karul, C. (2017). A panel stationarity test with gradual structural shifts: re-investigate the international commodity price shocks. Economic Modelling, 61, 181–192.CrossRefGoogle Scholar
  2. 2.
    Brännlund, R., Karimu, A., & Söderholm, P. (2017). Convergence in carbon dioxide emissions and the role of growth and institutions: a parametric and non-parametric analysis. Environmental Economics and Policy Studies, 19(2), 359–390.CrossRefGoogle Scholar
  3. 3.
    Rios, V., & Gianmoena, L. (2018). Convergence in CO2 emissions: a spatial economic analysis with cross-country interactions. Energy Economics, 75, 222–238.CrossRefGoogle Scholar
  4. 4.
    Solarin, S. A., & Bello, M. O. (2018). Persistence of policy shocks to an environmental degradation index: the case of ecological footprint in 128 developed and developing countries. Ecological Indicators, 89, 35–44.CrossRefGoogle Scholar
  5. 5.
    Fan, S., Burstyn, I., & Senthilselvan, A. (2010). Spatiotemporal modeling of ambient sulfur dioxide concentrations in rural Western Canada. Environmental Modeling & Assessment, 15(2), 137–146.CrossRefGoogle Scholar
  6. 6.
    Lee, D. S., Kingdon, R. D., Jenkin, M. E., & Webster, A. (2000). Modelling the contribution of different sources of sulphur to atmospheric deposition in the United Kingdom. Environmental Modeling & Assessment, 5(2), 105–118.CrossRefGoogle Scholar
  7. 7.
    Raheem, A. A., Adekola, F. A., & Obioh, I. O. (2009). The seasonal variation of the concentrations of ozone, sulfur dioxide, and nitrogen oxides in two Nigerian cities. Environmental Modeling & Assessment, 14(4), 497–509.CrossRefGoogle Scholar
  8. 8.
    Cai, Y., Chang, T., & Inglesi-Lotz, R. (2018). Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function. Energy, 161, 470–481.CrossRefGoogle Scholar
  9. 9.
    Pettersson, F., Maddison, D., Acar, S., & Söderholm, P. (2014). Convergence of carbon dioxide emissions: a review of the literature. International Review of Environmental and Resource Economics, 7(2), 141–178.CrossRefGoogle Scholar
  10. 10.
    Presno, M. J., Landajo, M., & González, P. F. (2018). Stochastic convergence in per capita CO2 emissions. An approach from nonlinear stationarity analysis. Energy Economics, 70, 563–581.CrossRefGoogle Scholar
  11. 11.
    Solarin, S. A. (2014). Convergence of CO2 emission levels: evidence from African countries. Journal of Economic Research, 19(1), 65–92.Google Scholar
  12. 12.
    Alvarez, F., Marrero, G. A., & Puch, L. A. (2005). Air pollution and the macroeconomy across European countries. Documento de trabajo, 10, 1–40.Google Scholar
  13. 13.
    Liu, C., Hong, T., Li, H., & Wang, L. (2018). From club convergence of per capita industrial pollutant emissions to industrial transfer effects: an empirical study across 285 cities in China. Energy Policy, 121, 300–313.CrossRefGoogle Scholar
  14. 14.
    Nourry, M. (2009). Re-examining the empirical evidence for stochastic convergence of two air pollutants with a pair-wise approach. Environmental and Resource Economics, 44(4), 555.CrossRefGoogle Scholar
  15. 15.
    Payne, J. E., Miller, S., Lee, J., & Cho, M. H. (2014). Convergence of per capita sulphur dioxide emissions across US states. Applied Economics, 46(11), 1202–1211.CrossRefGoogle Scholar
  16. 16.
    Hadri, K., & Kurozumi, E. (2011). A locally optimal test for no unit root in cross-sectionally dependent panel data. Hitotsubashi Journal of Economics, 165–184.Google Scholar
  17. 17.
    Acar, S., & Yeldan, A. E. (2018). Investigating patterns of carbon convergence in an uneven economy: the case of Turkey. Structural Change and Economic Dynamics., 46, 96–106.CrossRefGoogle Scholar
  18. 18.
    Lin, J., Inglesi-Lotz, R., & Chang, T. (2018). Revisiting CO2 emissions convergence in G18 countries. Energy Sources, Part B: Economics, Planning, and Policy, 13(5), 269–280.CrossRefGoogle Scholar
  19. 19.
    Shimamoto, K. (2017). Examining The existence of Co2 emission per capita convergence in East Asia. Regional Science Inquiry, 9(2), 11–28.Google Scholar
  20. 20.
    Churchill, S. A., Inekwe, J., & Ivanovski, K. (2018). Conditional convergence in per capita carbon emissions since 1900. Applied Energy, 228, 916–927.CrossRefGoogle Scholar
  21. 21.
    Zang, Z., Zou, X., Song, Q., Wang, T., & Fu, G. (2018). Analysis of the global carbon dioxide emissions from 2003 to 2015: convergence trends and regional contributions. Carbon Management, 9(1), 45–55.CrossRefGoogle Scholar
  22. 22.
    List, J. A. (1999). Have air pollutant emissions converged among US regions? Evidence from unit root tests. Southern Economic Journal, 144-155.CrossRefGoogle Scholar
  23. 23.
    Bulte, E., List, J. A., & Strazicich, M. C. (2007). Regulatory federalism and the distribution of air pollutant emissions. Journal of Regional Science, 47(1), 155–178.CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Smith, S. J., Aardenne, J. V., Klimont, Z., Andres, R. J., Volke, A., & Delgado Arias, S. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11(3), 1101–1116.CrossRefGoogle Scholar
  26. 26.
    The Guardian (2014). Carbon emissions: coal reliance puts Australia second on OECD's dirt list. Available at https://www.theguardian.com/environment/2014/jan/10/carbon-emissions-australias-growth-puts-it-near-top-of-oecd-rankings
  27. 27.
    Becker, R., Enders, W., & Lee, J. (2006). A stationarity test in the presence of an unknown number of smooth breaks. Journal of Time Series Analysis, 27(3), 381–409.CrossRefGoogle Scholar
  28. 28.
    Hadri, K., & Kurozumi, E. (2012). A simple panel stationarity test in the presence of serial correlation and a common factor. Economics Letters, 115(1), 31–34.CrossRefGoogle Scholar
  29. 29.
    Enders, W., & Lee, J. (2012). A unit root test using a Fourier series to approximate smooth breaks. Oxford Bulletin of Economics and Statistics, 74(4), 574–599.CrossRefGoogle Scholar
  30. 30.
    Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312.CrossRefGoogle Scholar
  31. 31.
    Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239–253.CrossRefGoogle Scholar
  32. 32.
    Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. University of Cambridge Working Papers in Economics.Google Scholar
  33. 33.
    Baltagi, B. H., Feng, Q., & Kao, C. (2012). A Lagrange multiplier test for cross-sectional dependence in a fixed effects panel data model. Journal of Econometrics, 170(1), 164–177.CrossRefGoogle Scholar
  34. 34.
    Bahmani-Oskooee, M., & Gelan, A. (2006). Testing the PPP in the non-linear STAR framework: evidence from Africa. Economics Bulletin, 6(17), 1–15.Google Scholar
  35. 35.
    Carrion-i-Silvestre, J., Del Barrio-Castro, T., & López-Bazo, E. (2005). Breaking the panels: an application to the GDP per capita. The Econometrics Journal, 8(2), 159–175.CrossRefGoogle Scholar
  36. 36.
    Strazicich, M. C., Lee, J., & Day, E. (2004). Are incomes converging among OECD countries? Time series evidence with two structural breaks. Journal of Macroeconomics, 26(1), 131–145.CrossRefGoogle Scholar
  37. 37.
    Romero-Ávila, D. (2009). Are OECD consumption–income ratios stationary after all? Economic Modelling, 26(1), 107–117.CrossRefGoogle Scholar
  38. 38.
    El-Montasser, G., Inglesi-Lotz, R., & Gupta, R. (2015). Convergence of greenhouse gas emissions among G7 countries. Applied Economics, 47(60), 6543–6552.CrossRefGoogle Scholar
  39. 39.
    OECD. (2007). Climate Change Policies. OECD Policy Briefs, August, 2007, 1–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of BusinessMultimedia UniversityMelakaMalaysia
  2. 2. Rajagiri Business SchoolKochiIndia

Personalised recommendations