Economic Evaluation of an Invasive Forest Pathogen at a Large Scale: The Case of Ash Dieback in France

  • Claudio PetuccoEmail author
  • Antonello Lobianco
  • Sylvain Caurla


The invasion of a forest by a pathogen is a complex dynamic and spatial problem. The induced disturbances do not only reduce the present availability of the affected tree species but alter its future availability, population structure and distribution as well. These disturbances also have an impact on the prices of wood products via supply shocks, which, in turn, influence forest management choices, thus introducing feedback effects between market and ecological dynamics. The main objective of this paper is to evaluate the economic impact of an invasive pathogen at a large scale by integrating the biophysical and economic aspects of the invasion into a dynamic and spatially explicit setting. The analysis is developed using a modified version of the French Forest Sector Model (FFSM), a recursive partial equilibrium model, to which a specifically designed pathogen spread and mortality model have been coupled. We calibrated the model to represent the ash dieback invasion in France. Results showed that impacts are not homogeneous across regions and generally depend on the resource distribution, pathogen spread and market structure. We observed that the behavioural adaptation of forest managers (i.e. regeneration and harvesting choices) is a non-negligible component of the total standing volume loss.


Invasive species Forest economics Economic evaluation Hymenoscyphus fraxineus Ash dieback Recursive partial equilibrium model 



The authors appreciate the helpful suggestions and comments of Anne Stenger and Pablo Andrés-Domenech (Université de Lorraine, Université de Strasbourg, AgroParisTech, CNRS, INRA, BETA), Benoit Marçais and Marie Grosdidier (UMR IAM, INRA, Université de Lorraine) as well as Christelle Robinet (INRA, UR0633, Zoologie Forestière). The authors would like to thank Alexandra Niedzwiedz at OLEF (Observatoire pour L’Economie de la Forêt) for the support with the empirical data. The authors are also grateful to the two anonymous reviewers and the advisory editor for their insightful comments and suggestions. The contribution of Claudio Petucco in this paper is the result of his PhD thesis work carried out at the Laboratory of Forest Economics, INRA, AgroParisTech.

Funding Information

This work was supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Supplementary material

10666_2019_9661_MOESM1_ESM.pdf (143 kb)
(PDF 143 KB)


  1. 1.
    Holmes, T.P., Aukema, J.E., Von Holle, B., Liebhold, A., Sills, E. (2009). Economic impacts of invasive species in forests. Annals of the New York Academy of Sciences, 1162, 18–38.CrossRefGoogle Scholar
  2. 2.
    Turner, J., Bulman, L., Richardson, B., Moore, J. (2004). Cost-benefit analysis of biosecurity and forest health research. New Zealand Journal of Forestry Science, 34, 324–343.Google Scholar
  3. 3.
    Pimentel, D., Zuniga, R., Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.CrossRefGoogle Scholar
  4. 4.
    Colautti, R.I., Bailey, S.A., Van Overdijk, C.D., Amundsen, K., MacIsaac, H.J. (2006). Characterised and projected costs of nonindigenous species in Canada. Biological Invasions, 8, 45–59.CrossRefGoogle Scholar
  5. 5.
    Cook, D.C., Thomas, M.B., Cunningham, S.A., Anderson, D.L., De Barro, P.J. (2007). Predicting the economic impact of an invasive species on an ecosystem service. Ecological Applications, 17, 1832–1840.CrossRefGoogle Scholar
  6. 6.
    Yemshanov, D., McKenney, D.W., Pedlar, J.H., Koch, F.H., Cook, D. (2009). Towards an integrated approach to modelling the risks and impacts of invasive forest species. Environmental Reviews, 17, 163–178.CrossRefGoogle Scholar
  7. 7.
    McKenney, D.W., Pedlar, J.H., Yemshanov, D., Barry Lyons, D., Campbell, K.L., Lawrence K. (2012). Estimates of the potential cost of emerald ash borer (Agrilus planipennis Fairmaire) in Canadian municipalities. Arboriculture and Urban Forestry, 38, 81–91.Google Scholar
  8. 8.
    Yemshanov, D., McKenney, D.W., de Groot, P., Haugen, D., Sidders, D., Joss, B. (2009). A bioeconomic approach to assess the impact of an alien invasive insect on timber supply and harvesting: a case study with Sirex noctilio in eastern Canada. Canadian Journal of Forest Research, 39, 154–168.CrossRefGoogle Scholar
  9. 9.
    Kovacs, K.F., & et al. (2010). Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecological Economics, 69, 569–578.CrossRefGoogle Scholar
  10. 10.
    Kovacs, K.F., Mercader, R.J., Haight, R.G., Siegert, D.G., McCullough, N.W., Liebhold, A.M. (2011). The influence of satellite populations of emerald ash borer on projected economic costs in U.S. communities, 2010–2020. Journal of Environmental Management, 92, 2170–2181.CrossRefGoogle Scholar
  11. 11.
    Cook, D.C., & Matheson, A.C. (2008). An estimate of the potential economic impact of pine pitch canker in Australia. Australian Forestry, 71, 107–112.CrossRefGoogle Scholar
  12. 12.
    Sharov, A.A., & Liebhold, A.M. (1998). Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecological Applications, 8, 1170–1179.CrossRefGoogle Scholar
  13. 13.
    Holmes, T.P. (1991). Price and welfare effects of catastrophic forest damage from southern pine beetle epidemics. Forest Science, 37, 500–516.Google Scholar
  14. 14.
    Soliman, T., Mourits, M.C., Van Der Werf, W., Hengeveld, G.M., Robinet, C., Oude Lansink, A.G. (2012). Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe. PLoS One, 7, e45505.CrossRefGoogle Scholar
  15. 15.
    Lobianco, A., Delacote, P., Caurla, S. (2016). Barkaoui, A. Accounting for active management and risk attitude in forest sector models. An impact study on French forests. Environmental Modeling and Assessment, 21 (3), 391–405.CrossRefGoogle Scholar
  16. 16.
    Lobianco, A., Delacote, P., Caurla, S., Barkaoui, A. (2015). The importance of introducing spatial heterogeneity in bio-economic forest models: Insights gleaned from FFSM++. Ecological Modelling, 309-310, 82–92.CrossRefGoogle Scholar
  17. 17.
    Worrell, R. (2013). An assessment of the potential impacts of Ash dieaback in Scotland. Tech. Rep., Forestry Commission Scotland.Google Scholar
  18. 18.
    Pautasso, M., Aas, G., Queloz, V., Holdenrieder, O. (2013). European ash (Fraxinus excelsior) dieback–a conservation biology challenge. Biological Conservation, 158, 37–49.CrossRefGoogle Scholar
  19. 19.
    Boshier, D., & et al. (2005). Ash species in Europe: biological characteristics and practical guidelines for sustainable use, (p. 128). United Kingdom: Oxford Forestry Institute, University of Oxford. Scholar
  20. 20.
    Dobrowolska, D., Hein, S., Oosterbaan, A., Wagner, S., Clark, J., Skovsgaard, J.P. (2011). A review of European ash (Fraxinus excelsior L.): implications for silviculture. Forestry, 84(2), 133–148.CrossRefGoogle Scholar
  21. 21.
    IGN. (2017). Le mémento – Inventaire forestier. Tech. Rep., Institut National de l’Information Geographique et Forestiére.
  22. 22.
    Kowalski, T. (2006). Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathology, 36, 264–270.CrossRefGoogle Scholar
  23. 23.
    Queloz, V., Grünig, C.R., Berndt, R., Kowalski, T., Sieber, T.N., Holdenrieder, O. (2011). Cryptic speciation in Hymenoscyphus albidus. Forest Pathology, 41, 133–142.CrossRefGoogle Scholar
  24. 24.
    Baral, H.-O., Queloz, V., Hosoya, T. (2014). Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in europe. IMA Fungus, 5, 79–80.CrossRefGoogle Scholar
  25. 25.
    Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V., Sieber, T.N. (2014). Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Molecular plant pathology, the causal agent of European ash dieback. Molecular Plant Pathology, 15, 5–21.CrossRefGoogle Scholar
  26. 26.
    McKinney, L.V., Nie lsen, L.R., Collinge, D.B., Thomsen, I.M., Hansen, J.K., Kjær, E.D. (2014). The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathology, 63, 485–499.CrossRefGoogle Scholar
  27. 27.
    Sales, M H., Souza, C.M., Kyriakidis, P.C., Roberts, D.A., Vidal, E. (2007). Improving spatial distribution estimation of forest biomass with geostatistics: A case study for Rond.onia, Brazil. Ecological Modelling, 205, 221–230.CrossRefGoogle Scholar
  28. 28.
    Räty, M., Heikkinen, J., Kangas, A. (2011). Kriging with external drift in model localization. Mathematical and Computational Forestry. Natural Resource Sciences, 3, 1–14.Google Scholar
  29. 29.
    IGN. (2014). Un inventaire annuel sur la France entiére. Tech. Rep., Institut National de l’Information Geographique et Forestiére.
  30. 30.
    Caurla, S., Delacote, P., Lecocq, F., Barkaoui, A. (2013). Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model. Energy Policy, 63, 338–347.CrossRefGoogle Scholar
  31. 31.
    Samuelson, P. (1952). Spatial price equilibrium and linear programming. American Economic Review, 42, 283–303.Google Scholar
  32. 32.
    Armington, P.S. (1969). A theory of demand for products distinguished by place of production. IMF Staff papers, 16, 159–176.CrossRefGoogle Scholar
  33. 33.
    Sauquet, A., Lecocq, F., Delacote, P., Caurla, S., Barkaoui, A., Garcia, S. (2011). Estimating Armington elasticities for sawnwood and application to the French Forest Sector Model. Resource and Energy Economics, 33, 771–781.CrossRefGoogle Scholar
  34. 34.
    Buongiorno, J., Zhu, S., Zhang, D., Turner, J., Tomberlin, D. (2003). The global forest products model: structure, estimation, and applications Academic Press.Google Scholar
  35. 35.
    Robinet, C., Kehlenbeck, H., Kriticos, D.J., Baker, R.H., Battisti, A., Brunel, S., Dupin, M., Eyre, D., Faccoli, M., Ilieva, Z., Kenis, M. (2012). A suite of models to support the quantitative assessment of spread in pest risk analysis. PLoS ONE, 7, e43366.CrossRefGoogle Scholar
  36. 36.
    Maso, E.D., & Montecchio, L. (2014). Risk of natural spread of Hymenoscyphus fraxineus with environmental niche modelling and ensemble forecasting technique. Forest Research: Open Access, 3, 1–11.Google Scholar
  37. 37.
    Grosdidier, M., Ioos, R., Marçais, B. (2018). Do higher summer temperatures restrict the dissemination of Hymenoscyphus fraxineus in France? Forest Pathology, 48, e12426.CrossRefGoogle Scholar
  38. 38.
    Grosdidier, M., Ioos, R., Husson, C., Cael, O., Scordia, T., Marçais, B. (2018). Tracking the invasion: dispersal of Hymenoscyphus fraxineus airborne inoculum at different scales. FEMS Microbiology Ecology, 94, fiy049.CrossRefGoogle Scholar
  39. 39.
    Luchi, N., Montecchio, L., Santini, A. (2012). Situation with Ash in Italy: stand characteristics, health condition, ongoing work and research needs. In: Interim report from Chalara fraxinea, FRAXBACK Meeting in Vilnius, vol. 13, 14.Google Scholar
  40. 40.
    Laiviņš, M., Priede, A., Pušpure, I. (2016). Spread of Hymenoscyphus fraxineus in Latvia: analysis based on dynamics of young ash stands. In: Proceedings of the latvian academy of sciences. Section B. Natural, Exact, and Applied Sciences., vol. 70, 124–130 (De Gruyter Open).Google Scholar
  41. 41.
    Marcais, B., Husson, C., Cael, O., Dowkiw, A., Saintonge, F.X., Delahaye, L., Collet, C., Chandelier, A. (2017). Estimation of Ash Mortality Induced by Hymenoscyphus fraxineus in France and Belgium. Baltic Forestry, 23, 159–167.Google Scholar
  42. 42.
    Hanewinkel, M., Cullmann, D.A., Schelhaas, M.-J., Nabuurs, G.-J., Zimmermann, N.E. (2012). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3, 203–207.CrossRefGoogle Scholar
  43. 43.
    Hauptman, T., Piškur, B., De Groot, M., Ogris, N., Ferlan, M., Jurc, D. (2013). Temperature effect on c halara fraxinea: heat treatment of saplings as a possible disease control method. Forest Pathology, 43, 360–370.Google Scholar
  44. 44.
    Goberville, E., Hautekèete, N.C., Kirby, R.R., Piquot, Y., Luczak, C., Beaugrand, G. (2016). Climate change and the ash dieback crisis. Scientific Reports, 6, 35303.CrossRefGoogle Scholar
  45. 45.
    MAA. (2017). Résultats de l’enquête statistique annuelle MAAF/IRSTEA sur les ventes en France de plants forestiers pour la campagne de plantation 2015-2016. Note de service DGPE/ SDFCB/2017-229, Ministère de l’Agriculture et de l’Alimentation (French Ministry of Agriculture).
  46. 46.
    MAA. (2018). Résultats de l’enquête statistique annuelle MAA/ IRSTEA sur les ventes en France de plants forestiers pendant la campagne de plantation 2016-2017. Note de service DGPE/ SDFCB/2018-209, Ministère de l’Agriculture et de l’Alimentation (French Ministry of Agriculture).
  47. 47.
    Diggle, P.J., & Ribeiro, P.J. (2007). Model-based Geostatistics. Springer Series in Statistics, (p. 232). New York: Springer.Google Scholar
  48. 48.
    Piedallu, C., Gégout, J.-C., Lebourgeois, F., Seynave, I. (2016). Soil aeration, water deficit, nitrogen availability, acidity and temperature all contribute to shaping tree species distribution in temperate forests. Journal of Vegetation Science, 27, 387–399.CrossRefGoogle Scholar
  49. 49.
    LERFoB, & IFN. (2008). Guide d’utilisation de la carte des pH de surface des sols forestiers français. Tech. Rep. n. 2007-CPA-2-072, AgroParisTech (UMR LERFoB) – IFN.Google Scholar
  50. 50.
    R Core Team. (2013). A language and environment for statistical computing.Google Scholar
  51. 51.
    IGN. (2014). BD FORÊT® Version 1.0 – Descriptif de contenu. Tech. Rep., IGN.
  52. 52.
    Palahí, M., Pukkala, T., Blasco, E., Trasobares, A. (2007). Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain). European Journal of Forest Research, 126, 563–571.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Environmental Research and Innovation (ERIN) DepartmentBelvauxLuxembourg
  2. 2.Université de Lorraine, Université de Strasbourg, AgroParisTech, CNRS, INRA, BETANancyFrance

Personalised recommendations