Advertisement

Environmental Modeling & Assessment

, Volume 24, Issue 6, pp 625–639 | Cite as

Pollution-Adjusted Productivity Changes: Extending the Färe–Primont Index with an Illustration with French Suckler Cow Farms

  • K. Hervé DakpoEmail author
  • Philippe Jeanneaux
  • Laure Latruffe
Article
  • 81 Downloads

Abstract

Several approaches have been proposed in the literature to compute technical efficiency indices that account for bad outputs. The literature is, however, less rich when it comes to incorporating bad outputs in productivity indices. In this context, this article extends the multiplicatively complete Färe–Primont productivity index to a generalized version that considers pollution. This novel pollution-adjusted total factor productivity (TFP) is the ratio of an aggregated measure of good outputs to an aggregated measure of bad outputs and non-polluting inputs, in such a way that the materials balance principle is not distorted. A decomposition of this new pollution-adjusted TFP is proposed using the by-production. The latter implies considering a technology that lies at the intersection of two sub-technologies: one for the production of good outputs and the other for the generation of pollution. The pollution-adjusted TFP is further decomposed into pollution-adjusted technical change and efficiency change. The latter is further broken down into technical, scale, mix, and residual efficiency change components. A crucial advantage of the Färe–Primont index is the verification of the transitivity property that allows multi-temporal and multilateral comparisons. The generalized (pollution-adjusted) Färe–Primont TFP proposed here is illustrated with a sample of French suckler cow farms surveyed over the period of 1990 to 2013. The bad outputs considered are greenhouse gas emissions, namely methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). The results reveal a decrease in pollution-adjusted TFP by 5.57% during the period, due to technological regress of 2.23%, and to technical efficiency decrease of almost 3.34%.

Keywords

Total factor productivity Pollution Greenhouse gases Färe–Primont index Suckler cow farms France 

JEL Classification

D24 O47 Q10 Q50 

Notes

Acknowledgements

The authors thank the INRA Egeé team of UMRH, Clermont-Ferrand, France, for data access.

Funding Information

This research received funding from the Auvergne Regional Board (Conseil Régional d’Auvergne), from the European FP7 project FLINT, and from the FACCE-JPI project INCOME.

References

  1. 1.
    Lovell, C. A. K. (2016). Recent developments in productivity analysis. Pacific Economic Review, 21(4), 417–444.  https://doi.org/10.1111/1468-0106.12191.CrossRefGoogle Scholar
  2. 2.
    Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2016). Modelling pollution-generating technologies in performance benchmarking: recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research, 250(2), 347–359.  https://doi.org/10.1016/j.ejor.2015.07.024.CrossRefGoogle Scholar
  3. 3.
    Shephard, R. W. (1970). Theory of cost and production functions: Princeton University Press Princeton.Google Scholar
  4. 4.
    Färe, R., & Grosskopf, S. (2009). A comment on weak disposability in nonparametric production analysis. American Journal of Agricultural Economics, 91(2), 535–538.CrossRefGoogle Scholar
  5. 5.
    Färe, R., Grosskopf, S., Lovell, C. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.CrossRefGoogle Scholar
  6. 6.
    Färe, R., Grosskopf, S., & Pasurka, C. (1986). Effects on relative efficiency in electric power generation due to environmental controls. Resources and Energy, 8(2), 167–184.CrossRefGoogle Scholar
  7. 7.
    Førsund, F. R. (2017). Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance. Empirical Economics, 54, 67–99.  https://doi.org/10.1007/s00181-016-1219-9.CrossRefGoogle Scholar
  8. 8.
    Chung, Y. H., Fare, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51(3), 229–240.  https://doi.org/10.1006/jema.1997.0146.CrossRefGoogle Scholar
  9. 9.
    Kumar, S. (2006). Environmentally sensitive productivity growth: a global analysis using Malmquist–Luenberger index. Ecological Economics, 56(2), 280–293.CrossRefGoogle Scholar
  10. 10.
    Färe, R., Grosskopf, S., & Pasurka, C. A. (2001). Accounting for air pollution emissions in measures of state manufacturing productivity growth. Journal of Regional Science, 41(3), 381–409.  https://doi.org/10.1111/0022-4146.00223.CrossRefGoogle Scholar
  11. 11.
    Weber, W. L., & Domazlicky, B. (2001). Productivity growth and pollution in state manufacturing. Review of Economics and Statistics, 83(1), 195–199.  https://doi.org/10.1162/rest.2001.83.1.195.CrossRefGoogle Scholar
  12. 12.
    Mahlberg, B., & Sahoo, B. K. (2011). Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application. International Journal of Production Economics, 131(2), 721–726.  https://doi.org/10.1016/j.ijpe.2011.02.021.CrossRefGoogle Scholar
  13. 13.
    Du, J., Chen, Y., & Huang, Y. (2017). A modified Malmquist-Luenberger productivity index: assessing environmental productivity performance in China. European journal of operational research.  https://doi.org/10.1016/j.ejor.2017.01.006.CrossRefGoogle Scholar
  14. 14.
    Oh, D.-h., & Heshmati, A. (2010). A sequential Malmquist–Luenberger productivity index: environmentally sensitive productivity growth considering the progressive nature of technology. Energy Economics, 32(6), 1345–1355.  https://doi.org/10.1016/j.eneco.2010.09.003.CrossRefGoogle Scholar
  15. 15.
    Coelli, T., Lauwers, L., & Van Huylenbroeck, G. (2007). Environmental efficiency measurement and the materials balance condition. Journal of Productivity Analysis, 28(1–2), 3–12.  https://doi.org/10.1007/s11123-007-0052-8.CrossRefGoogle Scholar
  16. 16.
    Hailu, A., & Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: an application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83(3), 605–616.  https://doi.org/10.1111/0002-9092.00181.CrossRefGoogle Scholar
  17. 17.
    Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64(1), 117–135.  https://doi.org/10.1016/j.jeem.2012.02.005.CrossRefGoogle Scholar
  18. 18.
    Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2017). Greenhouse gas emissions and efficiency in French sheep meat farming: a non-parametric framework of pollution-adjusted technologies. European Review of Agricultural Economics, 44(1), 33–65.  https://doi.org/10.1093/erae/jbw013.CrossRefGoogle Scholar
  19. 19.
    Frisch, R. (1965). Theory of production: Dordrecht Reidel Publishing Company.Google Scholar
  20. 20.
    Shephard, R. W. (1953). Cost and production functions: DTIC Document.Google Scholar
  21. 21.
    Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica, 50(6), 1393–1414.  https://doi.org/10.2307/1913388.CrossRefGoogle Scholar
  22. 22.
    Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994). Productivity developments in Swedish hospitals: a Malmquist output index approach. In A. Charnes, W. W. Cooper, A. Y. Lewin, & L. M. Seiford (Eds.), Data envelopment analysis: theory, methodology, and applications (pp. 253–272). Amsterdam: Springer.CrossRefGoogle Scholar
  23. 23.
    Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 84(1), 66–83.Google Scholar
  24. 24.
    Grifell-Tatjé, E., & Lovell, C. A. K. (1997). A DEA-based analysis of productivity change and intertemporal managerial performance. Annals of Operations Research, 73, 177–189.CrossRefGoogle Scholar
  25. 25.
    Oh, Y., Oh, D.-h., & Lee, J.-D. (2016). A sequential global Malmquist productivity index: productivity growth index for unbalanced panel data considering the progressive nature of technology. Empirical Economics, 52, 1–24.  https://doi.org/10.1007/s00181-016-1104-6.CrossRefGoogle Scholar
  26. 26.
    Chen, Y., & Ali, A. I. (2004). DEA Malmquist productivity measure: new insights with an application to computer industry. European Journal of Operational Research, 159(1), 239–249.  https://doi.org/10.1016/S0377-2217(03)00406-5.CrossRefGoogle Scholar
  27. 27.
    Chen, Y. (2003). A non-radial Malmquist productivity index with an illustrative application to Chinese major industries. International Journal of Production Economics, 83(1), 27–35.  https://doi.org/10.1016/S0925-5273(02)00267-0.CrossRefGoogle Scholar
  28. 28.
    Krüger, J. J. (2003). The global trends of total factor productivity: evidence from the nonparametric Malmquist index approach. Oxford Economic Papers, 55(2), 265–286.  https://doi.org/10.1093/oep/55.2.265.CrossRefGoogle Scholar
  29. 29.
    Nin, A., Arndt, C., & Preckel, P. V. (2003). Is agricultural productivity in developing countries really shrinking? New evidence using a modified nonparametric approach. Journal of Development Economics, 71(2), 395–415.  https://doi.org/10.1016/s0304-3878(03)00034-8.CrossRefGoogle Scholar
  30. 30.
    De Borger, B., & Kerstens, K. (2000). The Malmquist productivity index and plant capacity utilization. Scandinavian Journal of Economics, 102(2), 303–310.  https://doi.org/10.1111/1467-9442.00201.CrossRefGoogle Scholar
  31. 31.
    Grifell-Tatjé, E., & Lovell, C. A. K. (2015). Productivity accounting: the economics of business performance: Cambridge University Press.Google Scholar
  32. 32.
    Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estadistica, 4(2), 209–242.  https://doi.org/10.1007/bf03006863.CrossRefGoogle Scholar
  33. 33.
    O’Donnell, C. J. (2010). Measuring and decomposing agricultural productivity and profitability change. Australian Journal of Agricultural and Resource Economics, 54(4), 527–560.  https://doi.org/10.1111/j.1467-8489.2010.00512.x.CrossRefGoogle Scholar
  34. 34.
    Grifell-Tatjé, E., & Lovell, C. A. K. (1995). A note on the Malmquist productivity index. Economics Letters, 47(2), 169–175.  https://doi.org/10.1016/0165-1765(94)00497-p.CrossRefGoogle Scholar
  35. 35.
    Lovell, C. A. K. (2003). The decomposition of Malmquist productivity indexes. Journal of Productivity Analysis, 20(3), 437–458.  https://doi.org/10.1023/A:1027312102834.CrossRefGoogle Scholar
  36. 36.
    Ray, S. C., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: comment. American Economic Review, 87(5), 1033–1039.Google Scholar
  37. 37.
    Färe, R., Grosskopf, S., & Margaritis, D. (2008). Efficiency and productivity: Malmquist and more. In H. O. Fried, & S. S. Schmidt (Eds.), The measurement of productive efficiency and productivity growth (pp. 522–621).Google Scholar
  38. 38.
    Bjurek, H. (1996). The Malmquist Total factor productivity index. The Scandinavian Journal of Economics, 98(2), 303.  https://doi.org/10.2307/3440861.CrossRefGoogle Scholar
  39. 39.
    Briec, W., & Kerstens, K. (2011). The Hicks-Moorsteen productivity index satisfies the determinateness axiom. The Manchester School, 79(4), 765–775.  https://doi.org/10.1111/j.1467-9957.2010.02169.x.CrossRefGoogle Scholar
  40. 40.
    Diewert, W. E. (1992). Fisher ideal output, input, and productivity indexes revisited. Journal of Productivity Analysis, 3(3), 211–248.  https://doi.org/10.1007/BF00158354.CrossRefGoogle Scholar
  41. 41.
    O’Donnell, C. J. (2011). The sources of productivity change in the manufacturing sectors of the US economy. Working Papers WP07/2011: School of Economics, University of Queensland, Australia.Google Scholar
  42. 42.
    Eltetö, O., & Köves, P. (1964). On a problem of index number computation relating to international comparison. Statisztikai Szemle, 42, 507–518.Google Scholar
  43. 43.
    Szulc, B. (1964). Indices for multiregional comparisons. Przeglad Statystyczny, 3, 239–254.Google Scholar
  44. 44.
    O’Donnell, C. J. (2012). Nonparametric estimates of the components of productivity and profitability change in U.S. agriculture. American Journal of Agricultural Economics, 94(4), 873–890.  https://doi.org/10.1093/ajae/aas023.CrossRefGoogle Scholar
  45. 45.
    Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
  46. 46.
    Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & De Haan, C. (2006). Livestock’s long shadow: FAO Rome.Google Scholar
  47. 47.
    Murty, S., & Russell, R. R. (2002). On modeling pollution generating technologies. Discussion Papers Series (pp. 1–18): Department of Economics, University of California, Riverside.Google Scholar
  48. 48.
    Ayres, R. U., & Kneese, A. V. (1969). Production, consumption, and externalities. The American Economic Review, 59(3), 282–297.Google Scholar
  49. 49.
    Chambers, R. G. (1988). Applied production analysis: a dual approach: Cambridge University Press.Google Scholar
  50. 50.
    Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The measurement of efficiency of production: Springer.Google Scholar
  51. 51.
    Murty, S. (2015). On the properties of an emission-generating technology and its parametric representation. Economic Theory, 60(2), 243–282.  https://doi.org/10.1007/s00199-015-0877-8.CrossRefGoogle Scholar
  52. 52.
    Dakpo, K. H. (2016). On modeling pollution-generating technologies: a new formulation of the by-production approach. Rennes, France: Working Paper SMART– LERECO N° 16–06, INRA.Google Scholar
  53. 53.
    Färe, R., Grosskopf, S., & Hernandez-Sancho, F. (2004). Environmental performance: an index number approach. Resource and Energy Economics, 26(4), 343–352.CrossRefGoogle Scholar
  54. 54.
    Zaim, O. (2004). Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework. Ecological Economics, 48(1), 37–47.CrossRefGoogle Scholar
  55. 55.
    Abad, A. (2015). An environmental generalised Luenberger-Hicks-Moorsteen productivity indicator and an environmental generalised Hicks-Moorsteen productivity index. Journal of Environmental Management, 161, 325–334.  https://doi.org/10.1016/j.jenvman.2015.06.055.CrossRefGoogle Scholar
  56. 56.
    Lauwers, L. (2009). Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecological Economics, 68(6), 1605–1614.  https://doi.org/10.1016/j.ecolecon.2008.08.022.CrossRefGoogle Scholar
  57. 57.
    O’Donnell, C. J. (2012). An aggregate quantity framework for measuring and decomposing productivity change. Journal of Productivity Analysis, 38(3), 255–272.  https://doi.org/10.1007/s11123-012-0275-1.CrossRefGoogle Scholar
  58. 58.
    Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17(1), 35–44.  https://doi.org/10.1016/0377-2217(84)90006-7.CrossRefGoogle Scholar
  59. 59.
    Olesen, O. B., & Petersen, N. C. (2003). Identification and use of efficient faces and facets in DEA. Journal of Productivity Analysis, 20(3), 323–360.  https://doi.org/10.1023/A:1027303901017.CrossRefGoogle Scholar
  60. 60.
    Portela, M. C. A. S., & Thanassoulis, E. (2006). Zero weights and non-zero slacks: different solutions to the same problem. Annals of Operations Research, 145(1), 129–147.  https://doi.org/10.1007/s10479-006-0029-4.CrossRefGoogle Scholar
  61. 61.
    Zhu, J. (2015). Data envelopment analysis: a handbook of models and methods (Vol. 221). London: Springer.Google Scholar
  62. 62.
    Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). Alternative secondary goals in DEA cross-efficiency evaluation. International Journal of Production Economics, 113(2), 1025–1030.  https://doi.org/10.1016/j.ijpe.2007.12.006.CrossRefGoogle Scholar
  63. 63.
    O’Donnell, C. J. (2008). An aggregate quantity-price framework for measuring and decomposing productivity and profitability change. Working Papers WP07/2008: School of Economics, University of Queensland, Australia.Google Scholar
  64. 64.
    Dakpo, K. H., Jeanneaux, P., Latruffe, L., Mosnier, C., & Veysset, P. (2018). Three decades of productivity change in French beef production: a Färe-Primont index decomposition. Australian Journal of Agricultural and Resource Economics, 0(0), doi: https://doi.org/10.1111/1467-8489.12264.CrossRefGoogle Scholar
  65. 65.
    Baráth, L., & Fertő, I. (2017). Productivity and convergence in European agriculture. Journal of Agricultural Economics, 68(1), 228–248.  https://doi.org/10.1111/1477-9552.12157.CrossRefGoogle Scholar
  66. 66.
    Baležentis, T. (2015). The sources of the total factor productivity growth in Lithuanian family farms: a Färe-Primont index approach. Prague Economic Papers, 2015(2), 225–241.CrossRefGoogle Scholar
  67. 67.
    Charroin, T., & Ferrand, M. (2010). Development of a coefficient set to analyze farm structure costs – application to mechanization costs of mixed farming systems. Renc. Rech. Ruminants, 413–416.Google Scholar
  68. 68.
    Fuglie, K., MacDonald, J. M., & Ball, V. E. (2007). Productivity growth in US agriculture. USDA-ERS Economic Brief(9).Google Scholar
  69. 69.
    Førsund, F. R. (2009). Good modelling of bad outputs: pollution and multiple-output production. International Review of Environmental and Resource Economics, 3(1), 1–38.  https://doi.org/10.1561/101.00000021.CrossRefGoogle Scholar
  70. 70.
    Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., & De Koning, A. (2002). Handbook on life cycle assessment: operational guide to the ISO standards. Dordrecht: Kluwer Academic Publishers.Google Scholar
  71. 71.
    Gac, A., Cariolle, M., Deltour, L., Espagnol, S., Flénet, F., Guingand, N., et al. (2011). Greenhouse gases and carbon sequestration – contributions for the environmental assessment of the agricultural activities. Innovations Agronomiques, 17, 83–94.Google Scholar
  72. 72.
    ADEME (2011). Guide des valeurs Dia’terre. Version référentiel 1.7. Google Scholar
  73. 73.
    Veysset, P., Lherm, M., Roulenc, M., Troquier, C., & Bebin, D. (2015). Productivity and technical efficiency of suckler beef production systems: trends for the period 1990 to 2012. animal, 9(12), 2050–2059.  https://doi.org/10.1017/S1751731115002013.CrossRefGoogle Scholar
  74. 74.
    Dakpo, K. H., Desjeux, Y., & Latruffe, L. (2017). productivity: indices of productivity and profitability using data envelopment analysis (DEA). R package version 1.0.0. https://CRAN.R-Project.org/package=productivity.
  75. 75.
    Pasiouras, F. (2013). Efficiency and productivity growth: modelling in the financial services industry: Wiley.Google Scholar
  76. 76.
    O’Donnell, C. J. (2014). Econometric estimation of distance functions and associated measures of productivity and efficiency change. Journal of Productivity Analysis, 41(2), 187–200.  https://doi.org/10.1007/s11123-012-0311-1.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Hervé Dakpo
    • 1
    Email author
  • Philippe Jeanneaux
    • 2
  • Laure Latruffe
    • 3
  1. 1.Economie Publique, AgroParisTech, INRAUniversité Paris-SaclayThiverval-GrignonFrance
  2. 2.VetAgro Sup, UMR TERRITOIRESLempdesFrance
  3. 3.INRA, UMR SMART-LERECORennesFrance

Personalised recommendations