Advertisement

Resource-Based Models of Mutualism

  • Roger CroppEmail author
  • John Norbury
Article
  • 47 Downloads

Abstract

Mutualist interactions are thought to be ubiquitous, spanning all levels of biological organisation, and involving most species on Earth. However, in contrast to population interactions such as competition and predation, a comprehensive and succinct theoretical explanation of mutualism has proved elusive. We use a new modelling framework that represents obligation, mutualist benefits and mutualist costs in an extended consumer resource approach to develop simple, consistent models of mutualism. We show how populations may stably transition between facultative and obligate mutualism and demonstrate that our solutions do not depend on saturating functions. We show facultative and obligate mutualisms between autotrophs and heterotrophs.

Keywords

Obligate mutualism Facultative mutualism Conservation of mass Finite resource Conservative normal framework 

Notes

References

  1. 1.
    Allee, W. C., & Bowen, E. S. (1932). Studies in animal aggregations: mass protection against colloidal silver among goldfishes. Journal of Experimental Biology, 61, 185–207.Google Scholar
  2. 2.
    Assaneo, F., Coutinho, R. M., Lin, Y., Mantilla, C., & Lutscher, F. (2013). Dynamics and coexistence in a system with intraguild mutualism. Ecological Complexity, 14, 64–74.CrossRefGoogle Scholar
  3. 3.
    Baker, C. M., Holden, M. H., Plein, M., McCarthy, M. A., & Possingham, H. P. (2018). Informing network management using fuzzy cognitive maps. Biological Conservation, 224, 122–128.CrossRefGoogle Scholar
  4. 4.
    Bode, M., Baker, C. M., Benshemesh, J., Burnard, T., Rumpff, L., Hauser, C. E., Lahoz-Monfort, J. J., & Wintle, B. A. (2017). Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods in Ecology and Evolution, 8(8), 1012–1021.CrossRefGoogle Scholar
  5. 5.
    Bazykin, A. D. (1998). Nonlinear dynamics of interacting populations. Singapore: World Scientific.CrossRefGoogle Scholar
  6. 6.
    Bronstein, J. L. (Ed.). (2015a). Mutualism. New York: Oxford University Press.Google Scholar
  7. 7.
    Bronstein, J. L. (2015b). The study of mutualism. Pages 3-19 in J. L. Bronstein, 1 editor. In Mutualism. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. 8.
    Case, T. J. (2000). An illustrated guide to theoretical ecology. New York: Oxford University Press.Google Scholar
  9. 9.
    Cropp, R. A., & Norbury, J. (2012). Constructing ecologies. Journal of Theoretical Biology, 294, 1–8.CrossRefGoogle Scholar
  10. 10.
    Cropp, R. A., & Norbury, J. (2015a). Mixotrophy: the missing link in consumer-resource-based ecologies. Theoretical Ecology, 8, 245–260.CrossRefGoogle Scholar
  11. 11.
    Cropp, R. A., & Norbury, J. (2015b). Population interactions in ecology: a rule-based approach to modeling ecosystems in a mass-conserving framework. SIAM Review, 57, 437–465.CrossRefGoogle Scholar
  12. 12.
    Cropp, R. A., & Norbury, J. (2018). Linking obligate mutualism models in an extended consumer-resource framework. Ecological Modelling, 374, 1–13.CrossRefGoogle Scholar
  13. 13.
    Dean, A. M. (1983). A simple model of mutualism. The American Naturalist, 121, 409–417.CrossRefGoogle Scholar
  14. 14.
    Graves, W. G., Peckham, B., & Pastor, J. (2006). A bifurcation analysis of a differential equations model for mutualism. Bulletin of Mathematical Biology, 68, 1851–1872.CrossRefGoogle Scholar
  15. 15.
    Gross, K. (2008). Positive interactions among competitors can produce species-rich communities. Ecology Letters, 11, 929–936.CrossRefGoogle Scholar
  16. 16.
    Holland, J. N. (2015). Population ecology of mutualism. In J. L. Bronstein (Ed.), Mutualism (pp. 133–158). New York: Oxford University Press.CrossRefGoogle Scholar
  17. 17.
    Holland, J. N., & DeAngelis, D. L. (2001). Population dynamics and the ecological stability of obligate pollination mutualisms. Oecologia, 126, 575–586.CrossRefGoogle Scholar
  18. 18.
    Holland, J. N., & DeAngelis, D. L. (2009). Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions. Ecology Letters, 12, 1357–1366.CrossRefGoogle Scholar
  19. 19.
    Holland, J. N., & DeAngelis, D. L. (2010). A consumer-resource approach to the density-dependent population dynamics of mutualism. Ecology, 91, 1286–1295.CrossRefGoogle Scholar
  20. 20.
    Holland, J. N., DeAngelis, D. L., & Bronstein, J. L. (2002). Population dynamics and mutualism: functional responses of benefits and costs. The American Naturalist, 159, 231–244.CrossRefGoogle Scholar
  21. 21.
    Holland, J. N., Ness, J. H., Boyle, A., & Bronstein, J. L. (2005). Mutualisms as consumer-resource interactions. In P. Barbosa & C. Castellanos (Eds.), Ecology of predator- prey interactions (pp. 17–34). Oxford: Oxford University Press.Google Scholar
  22. 22.
    Johnson, C. A., & Amarasekare, P. (2013). Competition for benefits can promote the persistence of mutualist interactions. Journal of Theoretical Biology, 328, 54–64.CrossRefGoogle Scholar
  23. 23.
    Kang, Y., Clark, R., Makiyama, M., & Fewell, J. (2011). Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden. Journal of Theoretical Biology, 289, 116–127.CrossRefGoogle Scholar
  24. 24.
    Kot, M. (2001). Elements of mathematical ecology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  25. 25.
    Levin, S. (Ed.). (2012). The Princeton guide to ecology. Oxford: Princeton University Press.Google Scholar
  26. 26.
    May, R. M. (1976). Models for two interacting populations. In R. M. May (Ed.), Theoretical ecology: principles and applications (pp. 49–70). Oxford: Blackwell Scientific Publications.Google Scholar
  27. 27.
    McDonald-Madden, E., Sabbadin, R., Game, E. T., Baxter, P. W. J., Chade’s, I., & Possingham, H. P. (2016). Using food-web theory to conserve ecosystems. Nature Communications, 7, 10245.  https://doi.org/10.1038/ncomms10245 www.nature.com/naturecommunications.CrossRefGoogle Scholar
  28. 28.
    Murray, J. D. (2001). Mathematical biology. Berlin: Springer-Verlag.Google Scholar
  29. 29.
    Pastor, J. (2008). Mathematical ecology of populations and ecosystems. Chichester: Wiley-Blackwell.Google Scholar
  30. 30.
    Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345–353.CrossRefGoogle Scholar
  31. 31.
    Sterner, R. W., Small, G. E., & Hood, J. M. (2011). The conservation of mass. 1 Nature Education Knowledge, 3, 20.Google Scholar
  32. 32.
    Tulloch, V. J. D., ÉE Plagányi, R. M., Brown, C. J., & Richardson, A. J. (2018). Ecosystem modelling to quantify the impact of historical whaling on southern hemisphere baleen whales. Fish and Fisheries, 19(1), 117–137.CrossRefGoogle Scholar
  33. 33.
    Thompson, A. R., Nisbet, R. M., & Schmitt, R. J. (2006). Dynamics of mutualist populations that are demographically open. Journal of Animal Ecology, 75, 1239–1251.CrossRefGoogle Scholar
  34. 34.
    Vitousek, P. M., & Matson, P. A. (2012). Nutrient cycling and biogeochemistry. In S. Levin (Ed.), The Princeton guide to ecology (pp. 330–339). New Jersey: Princeton University Press.Google Scholar
  35. 35.
    Wright, D. H. (1989). A simple, stable model of mutualism incorporating handling time. The American Naturalist, 134, 664–667.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Griffith School of EnvironmentGriffith UniversityNathanAustralia
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations