Advertisement

Environmental Modeling & Assessment

, Volume 24, Issue 1, pp 109–120 | Cite as

On Use of Expanding Parameters and Auxiliary Term in Homotopy Perturbation Method for Boussinesq Equation with Tidal Condition

  • Selva Balaji Munusamy
  • Anirban DharEmail author
Article
  • 43 Downloads

Abstract

This paper uses the homotopy perturbation method for the analytical solution of groundwater table fluctuations, in response to the tidal boundary condition, for a coastal unconfined aquifer with sloping beach face. The Boussinesq equation for sloping beach contains two non-linear terms. The governing equation is reconstructed in homotopic form with two virtual perturbation parameters and an auxiliary term. The secular terms generated from the non-linear diffusion term and the slope term are eliminated by using parameter expansions based on two virtual parameters. Two non-dimensional parameters emerge from the solution in the process of eliminating secular terms: (i) parameter equivalent to amplitude parameter and (ii) parameter representing beach slope. The second-order (starting from zeroth-order) solution is presented. The higher-order solution efficiently captures the non-linearity of the problem.

Keywords

Homotopy perturbation method Secular term Non-linearity Auxiliary term Approximate solution 

Notes

Funding Information

This study is supported by Science and Engineering Research Board (Grant Number: SB/FTP/ETA-0356/2013) under the Department of Science and Technology, Government of India.

Supplementary material

10666_2018_9636_MOESM1_ESM.tex (8 kb)
(TEX 7.82 KB)

References

  1. 1.
    Parlange, J.Y., Stagnitti, F., Starr, J.L., Braddock, R.D. (1984). Free-surface flow in porous media and periodic solution of the shallow-flow approximation. Journal of Hydrology, 70, 251–263.CrossRefGoogle Scholar
  2. 2.
    Nielsen, P. (1990). Tidal dynamics of the water table in beaches. Water Resources Research, 26(9), 2127–2134.Google Scholar
  3. 3.
    Song, Z., Li, L., Kong, J., Zhang, H. (2007). A new analytical solution of tidal water table fluctuations in a coastal unconfined aquifer. Journal of Hydrology, 340(3-4), 256–260. ISSN 00221694.CrossRefGoogle Scholar
  4. 4.
    Kong, J., Song, Z., Xin, P., Shen, C. (2011). A new analytical solution for tide-induced groundwater fluctuations in an unconfined aquifer with a sloping beach. China Ocean Engineering, 25(3), 479–494. ISSN 0890-5487.CrossRefGoogle Scholar
  5. 5.
    Jha, M.K., & Singh, A. (2014). Application of genetic algorithm technique to inverse modeling of tide-aquifer interaction. Environmental Earth Sciences, 71(8), 3655–3672. ISSN 18666299.  https://doi.org/10.1007/s12665-013-2758-4.CrossRefGoogle Scholar
  6. 6.
    Li, L., Barry, D.A., Stagnitti, F., Parlange, J., Jeng, D. (2000). Beach water table fluctuations due to spring-neap tides: moving boundary effects, vol. 23, pp. 817–824.Google Scholar
  7. 7.
    Teo, H.T., Jeng, D.S., Seymour, B.R., Barry, D.A., Li, L. (2003). A new analytical solution for water table fluctuations in coastal aquifers with sloping beaches. Advances in Water Resources, 26(12), 1239–1247. ISSN 03091708.CrossRefGoogle Scholar
  8. 8.
    Jeng, D.-S., Barry, D.A., Seymour, B.R., Dong, P., Li, L. (2005a). Two-dimensional approximation for tide-induced watertable fluctuations in a sloping sandy beach. Advances in Water Resources, 28(10), 1040–1047. ISSN 03091708.Google Scholar
  9. 9.
    Jeng, D.S., Seymour, B.R., Barry, D.A., Parlange, J.Y., Lockington, D.A., Li, L. (2005b). Steepness expansion for free surface flows in coastal aquifers. Journal of Hydrology, 309(2005), 85–92. ISSN 00221694.Google Scholar
  10. 10.
    Roberts, M.E., Trefry, M.G., Fowkes, N., Bassom, A.P., Abbott, P.C. (2011). Water-table response to tidal forcing at sloping beaches. Journal of Engineering Mathematics, 69, 291–311. ISSN 00220833.CrossRefGoogle Scholar
  11. 11.
    Liu, P.L.-F., & Wen, J. (1997). Nonlinear diffusive surface waves in porous media. Journal of Fluid Mechanics, 347, 119–139. ISSN 00221120.CrossRefGoogle Scholar
  12. 12.
    Stojsavljevic, J.D., Jeng, D.S., Seymour, B.R., Pokrajac, D. (2012). Higher order analytical solutions of water table fluctuations in coastal aquifers. Ground Water, 50(2), 301–307. ISSN 0017467X.  https://doi.org/10.1111/j.1745-6584.2011.00820.x.CrossRefGoogle Scholar
  13. 13.
    Yeh, H.D., Huang, C.S., Chang, Y.C., Jeng, D.S. (2010). An analytical solution for tidal fluctuations in unconfined aquifers with a vertical beach. Water Resources Research, 46(10), 1–12. ISSN 00431397.  https://doi.org/10.1029/2009WR008746.CrossRefGoogle Scholar
  14. 14.
    Dagan, G. (1967). Second-order theory of shallow free-surface flow in porous media. The Quarterly Journal of Mechanics and Applied Mathematics, 20(4), 517–526.CrossRefGoogle Scholar
  15. 15.
    Liao, J.S.H. (1992). The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis, Ph. D, thesis, Shanghai Jiao Tong University.Google Scholar
  16. 16.
    Liao, S. (2004). On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147(2), 499–513. ISSN 0096-3003.  https://doi.org/10.1016/S0096-3003(02)00790-7.CrossRefGoogle Scholar
  17. 17.
    Liao, S. (1997). Homotopy analysis method: a new analytical technique for nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 2(2), 95–100. ISSN 1007-5704.  https://doi.org/10.1016/S1007-5704(97)90047-2.CrossRefGoogle Scholar
  18. 18.
    Zhu, J., Zheng, L.-C., Zhang, X.-X. (2009). Analytical solution to stagnation-point flow and heat transfer over a stretching sheet based on homotopy analysis. Applied Mathematics and Mechanics, 30(4), 463–474. ISSN 1573-2754.  https://doi.org/10.1007/s10483-009-0407-2.CrossRefGoogle Scholar
  19. 19.
    Nadeem, S., & Hussain, A. (2009). Mhd flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method. Applied Mathematics and Mechanics, 30(12), 1569–1578. ISSN 1573-2754.  https://doi.org/10.1007/s10483-009-1208-6.CrossRefGoogle Scholar
  20. 20.
    Si, X.-Y., Si, X.-H., Zheng, L.-C., Zhang, X.-X. (2011). Homotopy analysis solution for micropolar fluid flow through porous channel with expanding or contracting walls of different permeabilities. Applied Mathematics and Mechanics, 32(7), 859–874. ISSN 1573-2754.  https://doi.org/10.1007/s10483-011-1465-6.CrossRefGoogle Scholar
  21. 21.
    He, J.H. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257–262.CrossRefGoogle Scholar
  22. 22.
    He, J.-H. (2000). A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics, 35(1), 37–43. ISSN 0020-7462.  https://doi.org/10.1016/S0020-7462(98)00085-7. http://www.sciencedirect.com/science/article/pii/S0020746298000857.CrossRefGoogle Scholar
  23. 23.
    He, J.-H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation, 135 (1), 73–79. ISSN 0096-3003.  https://doi.org/10.1016/S0096-3003(01)00312-5.CrossRefGoogle Scholar
  24. 24.
    He, J.H. (2012). Homotopy perturbation method with an auxiliary term. Abstract and Applied Analysis, 2012 (January), 1–7. ISSN 10853375.Google Scholar
  25. 25.
    Munusamy, S.B., & Dhar, A. (2016). Homotopy perturbation method-based analytical solution for tide-induced groundwater fluctuations. Groundwater, 54(3), 440–447. ISSN 1745-6584.  https://doi.org/10.1111/gwat.12371.CrossRefGoogle Scholar
  26. 26.
    Munusamy, S.B., & Dhar, A. (2017). Analytical solution of groundwater waves in unconfined aquifers with sloping boundary. Sadhana - Academy Proceedings in Engineering Sciences, 42(9), 1–8. ISSN 09737677.  https://doi.org/10.1007/s12046-017-0695-8.Google Scholar
  27. 27.
    He, J.H. (2014). Homotopy perturbation method with two expanding parameters. Indian Journal of Physics, 88(2), 193–196. ISSN 0973-1458.CrossRefGoogle Scholar
  28. 28.
    Diersch, H.-J. (2013). FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer Science & Business Media, Berlin.Google Scholar
  29. 29.
    Van Genuchten, M.T.H. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Science Society of America Journal, 44(5), 892. ISSN 0361-5995.CrossRefGoogle Scholar
  30. 30.
    Carsel, R.F., & Parrish, R.S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24 (5), 755–769. ISSN 00431397.  https://doi.org/10.1029/WR024i005p00755.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations