Environmental Modeling & Assessment

, Volume 23, Issue 6, pp 729–742 | Cite as

Mathematics for Scenarios of Biodiversity and Ecosystem Services

  • Luc DoyenEmail author


Balancing biodiversity conservation with food security and the preservation of a broader set of ecosystem services is among the greatest challenges of the century. The creation of the International Panel for Biodiversity and Ecosystem Services (IPBES), at the interface between decision support and scientific knowledge, is clearly in line with this ecological-economic perspective. IPBES particularly puts forward the development of model-based scenarios making sense economically and ecologically and promoting sustainability. The present paper provides generic modeling methods and tools to address such challenges. The paper argues that the framework of controlled dynamic systems under uncertainty together with ecoviability metrics are especially well suited. Such a modeling framework indeed makes it possible to simultaneously account for complex dynamics, indirect or indirect drivers, uncertainties along with multiple sustainability objectives. These general ideas are exemplified with scenarios relating to two applied fields: (i) fisheries and marine biodiversity and (ii) land-use and avifauna.


Scenarios Ecological economics Modeling Biodiversity Ecosystem services Public policy Optimality Viability 



The role of the research projects VOGUE, ECOPE (PIG CNRS), NAVIRE (Cluster of Excellence COTE, ANR-10-LABX-45), OYAMAR (FEDER), and ACROSS (ANR-14-CE03-0001) was also decisive. We are very grateful to Nicolas Sanz for his help in the editing of this paper.

Funding Information

This work has been carried out with the financial support of the Belmont Forum through the network SEAVIEW (ANR-14-JPF1-0003).


  1. 1.
    Aronsson, T., & Lofgren, K.-G. (1998). Green accounting in imperfect market economies. Environmental and Resource Economics, 11(3-4), 273–287.CrossRefGoogle Scholar
  2. 2.
    Arrow, K.J., Dasgupta, P., Maler, K.-G. (2003). Evaluating projects and assessing sustainable development in imperfect economies. Environmental and Resource Economics, 26(4), 647–685.CrossRefGoogle Scholar
  3. 3.
    Aubin, J.-P. (1990). A survey of viability theory. SIAM Journal on Control and Optimization, 28(4), 749–788.CrossRefGoogle Scholar
  4. 4.
    Baumgartner, S., & Quaas, M.F. (2009). Ecological-economic viability as a criterion of strong sustainability under uncertainty. Ecological Economics, 68(7), 2008–2020.CrossRefGoogle Scholar
  5. 5.
    Béné, C., Doyen, L., Gabay, D. (2001). A viability analysis for a bio-economic model. Ecological Economics, 36, 385–396.CrossRefGoogle Scholar
  6. 6.
    Béné, C., Godfrey-Wood, R., Newsham, A., Davies, M. (2012). Resilience: new Utopia or new tyranny? – reflection about the potentials and limits of the concept of resilience in relation to vulnerability reduction programmes. IDS working Paper 405. Brighton: Institute of Development Studies (p. 61).Google Scholar
  7. 7.
    Bertsekas, D.P. (2017). Dynamic programming and optimal control, 4th edn (Vol. I).Google Scholar
  8. 8.
    Börjeson, L., Höjer, M., Dreborg, K.-H., Ekvall, T., Finnveden, G. (2006). Scenario types and techniques: towards a users guide. Futures, 38(7), 723–739.CrossRefGoogle Scholar
  9. 9.
    Butchart, S., Walpole, M., Collen, B., van Strien, A., Scharlemann, J., Almond, R., Baillie, J., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J.-F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Morcillo, M.H., Oldfield, T.E.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.-C., Watson, R. (2010). Global biodiversity: indicators of recent declines. Science, 328(5982), 1164–1168.CrossRefGoogle Scholar
  10. 10.
    Chichilnisky, G. (1996). An axiomatic approach to sustainable development. Social Choice and Welfare, 13, 257–321.Google Scholar
  11. 11.
    Christ, & et al. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356, 260–264.CrossRefGoogle Scholar
  12. 12.
    Cissé, A., Blanchard, F., Doyen, L., Pereau, J.-C. (2015). Ecoviability for small-scale fisheries in the context of food security constraints. Ecological Economics, 119, 39–52.CrossRefGoogle Scholar
  13. 13.
    Clark, C.W. (1990). Mathematical bioeconomics, 2nd edn. New York: Wiley.Google Scholar
  14. 14.
    Clark, W.C., & Mangel, M. (2000). Dynamic state variable models in ecology, methods and applications. Oxford Series in Ecology and Evolution.Google Scholar
  15. 15.
    Conrad, J., & Clark, C.W. (1987). Natural resource economics: notes and problems. Cambridge University Press.Google Scholar
  16. 16.
    Cury, P., Mullon, C., Garcia, S., Shannon, L.J. (2005). Viability theory for an ecosystem approach to fisheries. ICES Journal of Marine Science, 62(3), 577–584.CrossRefGoogle Scholar
  17. 17.
    DeLara, M., & Doyen, L. (2008). Sustainable management of natural resources: mathematical models and methods. Springer.Google Scholar
  18. 18.
    De Lara, M., Ocana Anaya, E., Oliveros-Ramos, R., Tam, J. (2012). Ecosystem viable yields. Environmental Modeling & Assessment, 17(6), 565–575.CrossRefGoogle Scholar
  19. 19.
    Donald, P.F., Sanderson, F.J., van, I.J., Bommel, F.P., Burfield, J. (2006). Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990-2000. Agriculture Ecosystems and Environment, 116(3-4), 189–196.CrossRefGoogle Scholar
  20. 20.
    Doyen L., Béné, C., Bertignac, M., Blanchard, F., Cissé, A.-A., Dichmont, C., Gourguet, S., Guyader, O., Hardy, P.-Y., Jennings, S., Little, R., Macher, C., Mills, D., Noussair, A., Pereau, J-C., Pascoe, S., Sanz, N., Schwarz, A.-M., Smith, T., Thébaud, O. (2017). Ecoviability for ecosystem based fisheries management, fish and fisheries. Online
  21. 21.
    Doyen, L., & DeLara, M. (2010). Stochastic viability and dynamic programming. Systems and Control Letters, 59(10), 629–634.CrossRefGoogle Scholar
  22. 22.
    Doyen, L., & Martinet, V. (2012). Maximin, viability and sustainability. Journal of Economic Dynamics and Control, 36(9), 1414–1430.CrossRefGoogle Scholar
  23. 23.
    Doyen, L., Cissé, A., Gourguet, S., Mouysset, L., Hardy, P.-Y., Béné, C., Blanchard, F., Jiguet, F., Pereau, J. -C., Thébaud, O. (2013). Ecological-economic modeling for the sustainable management of biodiversity. Computational Management Science, 10, 353–364.CrossRefGoogle Scholar
  24. 24.
    Eisenack, K., Scheffran, J., Kropp, J.P. (2006). Viability analysis of management frameworks for fisheries. Environmental Modeling Assessment, 11, 69–79.CrossRefGoogle Scholar
  25. 25.
    FAO. (2013). FAO Statistical Yearbook 2013. FAO, Rome.Google Scholar
  26. 26.
    Fleurbaey, M. (2015). On sustainability and social welfare. Journal of Environmental Economics and Management, 71, 34–53.CrossRefGoogle Scholar
  27. 27.
    Grafton, R.Q., & Little, L.R. (2017). Risks, resilience, and natural resource management: lessons from selected findings. Natural Resource Modeling, 30, 91–111. Scholar
  28. 28.
    Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.CrossRefGoogle Scholar
  29. 29.
    Gourguet, S., Thébaud, O., Jennings, S., Little, L.R., Dichmont, C.M., Pascoe, S., Deng, R.A., Doyen, L. (2015). The cost of co-viability in the Australian Northern prawn fishery. Environmental Modeling and Assessment, 1–19.Google Scholar
  30. 30.
    Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10), e0185809.CrossRefGoogle Scholar
  31. 31.
    Hardy, P.-Y., Doyen, L., Béné, C., Mills, D. (2016). Viability and resilience of small-scale fisheries through cooperative arrangements. Environmental and Development Economics, 21(6), 713–741.CrossRefGoogle Scholar
  32. 32.
    Heal, G. (1998). Valuing the future economic theory and sustainability. New York: Columbia University Press.Google Scholar
  33. 33.
    Helm, D., & Hepburn, C. (2013). Nature in the balance: the economics of biodiversity. Oxford Scholarship Online,
  34. 34.
    Howarth, R.B., & Norgaard, R.B. (1995). Intergenerational choices under global environmental change. In Bromley, D. (Ed.) The handbook of environmental economics (pp. 112–138): Blackwell.Google Scholar
  35. 35.
    IPBES. (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. In Ferrier, S., Ninan, K.N., Leadley, P., Alkemade, R., Acosta, L.A., Akçakaya, H.R., Brotons, L., Cheung, W., Christensen, V., Harhash, K.A., Kabubo-Mariara, J., Lundquist, C., Obersteiner, M., Pereira, H., Peterson, G., Pichs-Madruga, R., Ravindranath, N.H., Rondinini, C., Wintle, B. (Eds.) Secretariat of the intergovernmental science-policy platform on biodiversity and ecosystem services. 32 pages. Bonn .Google Scholar
  36. 36.
    Kleijn, D., & et al. (2006). Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecology Letters, 9(3), 243–254.CrossRefGoogle Scholar
  37. 37.
    Krawczyk, J.A., Pharo, A., Serea, O.S., Sinclair, S. (2013). Computation of viability kernels: a case study of by-catch fisheries. Computational Management Science, 10(4), 365–396.CrossRefGoogle Scholar
  38. 38.
    Leadley, P., Pereira, H.M., Alkemade, R., Fernandez-Manjarrés, J.F., Proença, V., Scharlemann, J.P.W., Walpole, M.J. (2010). Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series n. 50, 132 pages.Google Scholar
  39. 39.
    Mace, G.M., Norris, K., Fitter, A.H. (2012). Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology and Evolution., 27(1), 19–26.CrossRefGoogle Scholar
  40. 40.
    Maynou, F. (2014). Coviability analysis of Western Mediterranean fisheries under MSY scenarios for 2020. ICES Journal of Marine Science, 71(7), 1563–1571.CrossRefGoogle Scholar
  41. 41.
    Martin, S. (2004). The cost of restoration as a way of defining resilience: a viability approach applied to a model of lake eutrophication. Ecology and Society, 9, 2.CrossRefGoogle Scholar
  42. 42.
    Metrick, A., & Weitzman, M. (1998). Conflicts and choices in biodiversity preservation. Journal of Economic Perspectives, 12(3), 21–34.CrossRefGoogle Scholar
  43. 43.
    Millenium Ecosystem Assessment. (2005). Ecosystems and human well-being. Washington, DC: Island Press.Google Scholar
  44. 44.
    United Nations. (2012). Millennium development goals report 2012. United Nations, New York.Google Scholar
  45. 45.
    Mouysset L., Doyen, L., Pereau, J.C., Jiguet, F. (2014). Benefits and costs of biodiversity in agricultural public policies. European Review of Agricultural Economics. On line.Google Scholar
  46. 46.
    Mouysset, L., Doyen, L., Jiguet, F. (2014). Co-viability of farmland biodiversity and agriculture. Conservation Biology, 28(1), 187–201.CrossRefGoogle Scholar
  47. 47.
    Mouysset, L., Doyen, L., Allaire, G., Jiguet, F., Leger, F. (2011). Bio economic modeling for a sustainable management of biodiversity and agriculture. Ecological Economics, 70(4), 617–626.CrossRefGoogle Scholar
  48. 48.
    Pereau, J. -C., Doyen, L., Little, R., Thébaud, O. (2012). The triple bottom line: meeting ecological, economic and social goals with individual transferable quotas. Journal of Environmental Economics and Management, 63, 419–434.CrossRefGoogle Scholar
  49. 49.
    Plagànyi, É. (2007). Models for an ecosystem approach to fisheries (No 477). Food & Agriculture Organisation, Rome.Google Scholar
  50. 50.
    Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S. III, Lambin, E., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14 (2), 32. Scholar
  51. 51.
    Sabatier, R., Doyen, L., Tichit, M. (2012). Action versus result-oriented schemes in a grassland agroecosystem: a dynamic modelling approach. PLOS One. On line.Google Scholar
  52. 52.
    Sanchirico, J.N., Smith, M.D., Lipton, D.W. (2008). An empirical approach to ecosystem-based management. Ecological Economics, 64, 586–596.CrossRefGoogle Scholar
  53. 53.
    Schuhbauer, A., & Sumaila, U.R. (2016). Economic viability and small-scale fisheries — a review. Ecological Economics, 124, 69–75.CrossRefGoogle Scholar
  54. 54.
    Solow, R.M. (1974). Intergenerational equity and exhaustible resources. Review of Economic Studies, 41, 29–45. (Symposium).CrossRefGoogle Scholar
  55. 55.
    Weitzman, M.L. (2015). Nature in the balance: the economics of biodiversity. Journal of Economic Literature, 12, 52.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CNRS, GREThAUniversity of BordeauxPessacFrance

Personalised recommendations