Advertisement

Environmental Modeling & Assessment

, Volume 24, Issue 5, pp 457–477 | Cite as

Three-dimensional Modelling of Radionuclides Dispersion in a Marine Environment with Application to the Fukushima Dai-ichi Case

  • Vito BacchiEmail author
  • Pablo Tassi
Article
  • 112 Downloads

Abstract

In this work, we present the implementation, verification and validation of a three-dimensional model able to reproduce the propagation of \(^{137}C_{s}\) radionuclide in coastal waters and its interaction with suspended sediments, in the framework of the open-source TELEMAC-MASCARET modelling system. The validation of the model was realized by comparing numerical results with field measurements of radionuclides concentration in the Japan Sea nearby the Fukushima Dai-ichi nuclear power plant (NPP). The developed model uses as external forcing the data available immediately after or during the accident, as, e.g. weather conditions (wind, pressure, temperature) and/or the harmonic components of tides. In contrast with previous models implemented in the study area, the model presented here is limited to the coastal area near Fukushima and refined in the coastal area close to the NPP. Numerical results show that the model is able to reproduce the propagation and diffusion of the released \(^{137}C_{s}\) in the vicinity of the Fukushima Dai-ichi NPP. Consequently, we show that the numerical results obtained with a small-scale model with a simple forcing are consistent, at a coastal scale, with models which employed a general circulation model based on data assimilation techniques or variation method for hydrodynamics. Therefore, this model could be employed in an emergency situation, when the dissolved radioactivity is considered.

Keywords

Radionuclides Sediment transport Fukushima Forecasting model Decay behaviour Tracers 

Notes

Acknowledgments

The authors are very grateful to Prof. R. Periáñez, for suggestions and for kindly providing data from the MODARIA programme. The present work benefited from the input of Dr. Agnès Leroy, Mr. Yoann Audouin and Mr. Davide Boscia, who provided valuable technical assistance. The authors wish to thank Dr. Françoise Siclet for her advice during the early steps of the research summarized here.

Funding Information

This study was supported by the French ANR-Amorad project and performed through a collaboration between the Electricité de France (EDF) and the Saint-Venant Hydraulics Laboratory.

References

  1. 1.
    Bailly du Bois, P., Garreau, P., Laguionie, P., Korsakissok, I. (2014). Comparison between modelling and measurement of marine dispersion, environmental half-time and 137Cs inventories after the Fukushima Daiichi accident. Ocean Dynamics, 64(3), 361–383.Google Scholar
  2. 2.
    Behrens, E., Schwarzkopf, F.U., Lübbecke, J.F., Böning, C.W. (2012). Model simulations on the long-term dispersal of 137cs released into the pacific ocean off Fukushima. Environmental Research Letters, 7, 034004.Google Scholar
  3. 3.
    Brooks, A.N., & Hughes, T.J.R. (1982). Streamline upwind Petrov-Galerkin formulations for convection-dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meths. Appl. Mech. Engrg., 32, 199–259.Google Scholar
  4. 4.
    Carroll, J., & Harms, I.H. (1999). Uncertainty analysis of partition coefficients in a radionuclide transport model. Water Research, 11(33), 2617–2626.Google Scholar
  5. 5.
    Choi, Y., Kida, S., Takahashi, K. (2013). The impact of oceanic circulation and phase transfer on the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. Biogeosciences, 10, 4911–4925.Google Scholar
  6. 6.
    Cunha, C.d.L.d.N., & Rosman, P.C. (2005). A semi-implicit finite element model for natural water bodies. Water Research, 39, 2034–2047.Google Scholar
  7. 7.
    Dutra Do Carmo, E.G., & Galeão, A.G. (1991). Feedback Petrov-Galerkin methods for convection-dominated problems. Comp. Meths. Appl. Mechs. Engng., 88, 1–16.Google Scholar
  8. 8.
    Egbert, G.D., Bennett, A.F., Foreman, M.G. (1994). Topex/ poseidon tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99, 24821–24852.Google Scholar
  9. 9.
    Egbert, G.D., & Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Ocean Technology., 19, 183–204.Google Scholar
  10. 10.
    Estournel, C., Bosc, E., Bocquet, M., Ulses, C., Marselaix, P., Winiarek, V., Osvath, I., Nguyen, C., Duhaut, T., Lyard, F., Michaud, H., Auclair, F. (2012). Assessment of the amount of 137-Cs released into the Pacific Ocean after the Fuskushima accident and analysis of its dispersion in Japanase coastal waters. Journal of Geophysical Research, 117, C1014.Google Scholar
  11. 11.
    Flather, R.A. (1976). Results from surge prediction model of the North-West European continental shelf for April, November and December 1973. Institute of oceanography (UK), Report nro. 24.Google Scholar
  12. 12.
    Galeão, A.C., & Dutra do Carmo, E.G. (1988). A consistent approximated upwind Petrov-Galerkin formulation for convection-dominated problems. Computer Methods in Applied Mechanics and Engineering, 68, 83–95.Google Scholar
  13. 13.
    García, M. (2008). Sediment transport and morphodynamics. Chapter 2 of sedimentation engineering: processes, Measurements Modeling, and Practice pp. 21–163.Google Scholar
  14. 14.
    Hervouet, J.-M. (2007). Hydrodynamics of free surface flows: Modelling with the finite element method. ISBN: 978-0-470-03558-0, pp. 360.Google Scholar
  15. 15.
    Hervouet, J.-M., Razafindrakoto, E., Villaret, C. (2011). Dealing with dry zones in free surface flows: a new class of advection schemes. In Proceedings of the 34th IAHR World Congress 33rd Hydrology and Water Resources Symposium, 10th Conference on Hydraulics in Water engineering: balance and uncertainty - water in a changing world, 26 June - 1 July 2011, Brisbane Australia. Engineers Australia, 2011. ISBN 978-0-85825-868-6.Google Scholar
  16. 16.
    Higashi, H., Morino, Y., Furuichi, N., Ohara, T. (2015). Ocean dynamic processes causing spatially heterogeneous distribution of sedimentary caesium-137 massively released from the Fukushima Daiichi Nuclear Power Plant. Biogeosciences, 12, 7107–7128.Google Scholar
  17. 17.
    Hughes, T.J.R., & Brooks, A.N. (1982). A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline upwind procedure. In Gallagher, R.H., Carey, G.F., Oden, J.T., Zienkiewicz, O.C. (Eds.) Finite elements in fluids IV (pp. 46–65). London: Wiley.Google Scholar
  18. 18.
    Hughes, T.J.R., Mallet, M., Mizukami, A. (1986). A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Computer Methods in Applied Mechanics and Engineering, 54, 341–355.Google Scholar
  19. 19.
    IAEA. (1985). Sediment \(K_{d}\) and concentration factors for radionuclides in the marine environment. IAEA Technical report 247. Vienna: International Atomic Energy Agency.Google Scholar
  20. 20.
    Inomata, Y., Aoyama, M., Tsubono, T., Tsumune, D., Hirose, K. (2016). Spatial and temporal distributions of 134Cs and 137Cs derived from the TEPCO Fukushima Daiichi Nuclear Power Plant accident in the North Pacific Ocean by using optimal interpolation analysis. Environmental Science: Processes & Impacts, 18, 126–136.Google Scholar
  21. 21.
    Jayne, S.R., Hogg, N.G., Waterman, S.N., Rainville, L., Donohue, K.A., Randolph Watts, D., Tracey, K.L., McClean, J.L., Maltrud, M.E., Qiu, B., Chen, S. (2009). The Kuroshio extension and its recirculation gyres. Deep Sea Res. Part I 56(12).Google Scholar
  22. 22.
    Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., Awaji, T. (2011). Preliminary numerical experiments on oceanic dispersion of 131-I and 137-Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. Journal of Nuclear Science and Technology, 48, 1349–1356.Google Scholar
  23. 23.
    Kawamura, H., Kobayashi, T., Furuno, A., Usui, N., Kamachi, M. (2014). Numerical simulation on the long-term variation of radioactive cesium concentration in the North Pacific due to the Fukushima disaster. Journal of Environmental Radioactivity, 136, 64–75.Google Scholar
  24. 24.
    Kobayashi, T., Otosaka, S., Togawa, O., Hayashi, K. (2007). Development of a non-conservative radionuclides dispersion model in the ocean and its application to surface cesium-137 dispersion in the Irish Sea. Journal of Nuclear Science and Technology, 44, 238–247.Google Scholar
  25. 25.
    Kobayashi, T., Nagai, H., Chino, M., Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Daiichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. Journal of Nuclear Science and Technology, 50, 255–264.Google Scholar
  26. 26.
    Lamego, F.F. (2013). Advanced nuclear reactors and Tritium impacts: modeling the aquatic pathway. Progress in Nuclear Energy, 68, 9e22.Google Scholar
  27. 27.
    Lamego, F.F. (2013). Eulerian modeling of radionuclides in surficial water: the case of Ilha Grande Bay (RJ, Brazil). In Integral methods in science and engineering. 1st edn. New York: Springer.Google Scholar
  28. 28.
    Margvelashvily, N., Maderich, V., Yuschenko, S., Zheleznyak, M. (2000). 3-D numerical modelling of mud and radionuclide transport in the Chernobyl Cooling Pond and Dnieper–Boog Estuary. In Winterwerp, J.C., & Kranenburg, C. (Eds.) Fine sediments dynamics in the marine environnement proceedings of INTERCOH-2000 (pp. 595-610). Elsevier.Google Scholar
  29. 29.
    Masumoto, Y., Miyazawa, Y., Tsumune, D., Tsubono, T., Kobayashi, T., Kawamura, H., Estournel, C., Marseleix, P., Lanerolle, L., Mehra, A., Garraffo, Z.D. (2012). Oceanic dispersion simulations of 137-Cs released from the Fukushima Daiichi nuclear power plant. Elements, 8, 207–212.Google Scholar
  30. 30.
    Mazaheri, M., Samani, J.M., Samani, M.V. (2013). Analytical solution to one-dimensional advection-diffusion equation with several point sources through arbitrary time-dependent emission rate patterns. Journal of Agriculture, Science and Technology, 15, 1231–1245.Google Scholar
  31. 31.
    Min, B.-I., Periáñez, R., Kim, I.-G. , Suh, K.-S. (2013). Marine dispersion assessment of 137cs released from the Fukushima nuclear accident. Marine Pollution Bulletin, 72, 22–33.Google Scholar
  32. 32.
    Miyazawa, Y., Masumoto, Y., Varlamov, S.M., Miyama, T. (2012). Transport simulation of the radionuclide from the shelf to the open ocean around Fukushima. Cont. Shelf Res.Google Scholar
  33. 33.
    Nakano, M., & Povinec, P.P. (2012). Long-term simulations of the 137cs dispersion from the Fukushima accident in the world ocean. Journal of Environmental Radioactivity, 111, 109–115.Google Scholar
  34. 34.
    Onishi, Y., Dummuller, D.C., Trent, D.S. (1989). Preliminary testing of turbulence and radionuclide transport modeling in deep ocean environment. Richland: Report PNL-6853 pacific northwest laboratory.Google Scholar
  35. 35.
    Onishi, Y., Kurikami, H., Yokuda, S.T. (2014). Preliminary three-dimensional simulation of sediment and cesium transport in the ogi dam reservoir using FLESCOT – Task 6, Subtask 2 Technical Report PNNL-23257. Washington: Pacific Northwest National Laboratory Richland.Google Scholar
  36. 36.
    Periáñez, R. (1998). A three dimensional \(r-\)coordinate model to simulate the dispersion of radionuclides in the marine environment. Ecological Modelling, 114, 59–70.Google Scholar
  37. 37.
    Periáñez, R., Abril, J.M., García-León, M. (1996). Modelling the dispersion of non-conservative radionuclides in tidal waters: Part 1. Conceptual and mathematical model. Journal of Environmental Radioactivity, 31, 127–141.Google Scholar
  38. 38.
    Periáñez, R. (1999). Three dimensional modelling of the tidal dispersion of non-conservative radionuclides in the marine environment. Application to 239,240Pu dispersion in the eastern Irish Sea. Journal of Marine Systems, 22, 37–51.Google Scholar
  39. 39.
    Periáñez, R. (2003). Redissolution and long-term transport of radionuclides released from a contaminated sediment: a numerical modelling study. Estuarine, Coastal and Shelf Science, 56, 5–14.Google Scholar
  40. 40.
    Periáñez, R. (2005). Modelling the dispersion of radio nuclides in the marine environment: an introduction. Berlin: Springer. ISBN: 3-540-24875-7.Google Scholar
  41. 41.
    Periáñez, R. (2012). Modelling the environmental behaviour of pollutants in Algeciras Bay (south Spain). Marine Pollution Bulletin, 64, 221–232.Google Scholar
  42. 42.
    Periáñez, R., Suh, K.S., Min, B.I. (2012). Local scale marine modelling of Fukushima releases. Assessment of water and sediment contamination and sensitivity to water circulation description. Marine Pollution Bulletin, 64 (11), 2333–2339.Google Scholar
  43. 43.
    Periáñez, R., Suh, K.-S., Byung-II, M., Casacuberta, N., Masqué, P. (2013). Numerical modeling of the releases of 90Sr from Fukushima to the ocean: an evaluation of the source term. Environmental Science & Technology, 47, 12305–12313.Google Scholar
  44. 44.
    Periáñez, R., Suh, K.-S., Min, B.-I. (2013). Should we measure plutonium concentrations in marine sediments near Fukushima? Journal of Radioanalytical and Nuclear Chemistry, 298, 635–638.Google Scholar
  45. 45.
    Periáñez, R., Suh, K.S. , Min, B.I. (2015). Numerical Modeling as a Tool for Managing Nuclear Accidents: The Fukushima Daiichi Case. Energy vol. 4: Nuclear Science.Google Scholar
  46. 46.
    Periáñez, R., Brovchenko, I., Duffa, C., Jung, K.-T., Kobayashi, T., Lamego, F., Maderich, V., Min, B.-I., Nies, H., Osvath, I., Psaltaki, M., Suh, K.S. (2015). A new comparison of marine dispersion model performances for Fukushima Dai-ichi releases in the frame of IAEA MODARIA program. J. Environ. Radioactivity, 150, 247–269.Google Scholar
  47. 47.
    Periáñez, R., Bezhenar, R., Brovchenko, I., Duffa, C., Iosjpe, M., Jung, K-T., Kobayashi, T., Lamego, F., Maderich, V., Min, B.-I., Nies, H., Osvath, I., Outola, I., Suh, K.S., de With, G. (2016). Modelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarios. Science of the Total Environment, In press.Google Scholar
  48. 48.
    Roe, P.L. (1987). Linear advection schemes on triangular meshes. Technical report 8720. Cranfield Institute of Technology.Google Scholar
  49. 49.
    Roland, A., Zhang, Y.J., Wang, H.V., Meng, Y., Teng, Y.C., Maderich, V., Brovchenko, I., Dutour-Sikiric, M., Zanke, U. (2012). A fully coupled 3D wave-current interaction model on unstructured grids. Journal of Geophysical Research: Oceans, 117.Google Scholar
  50. 50.
    Rosman, P.C.C. (2001). Modeling shallow water bodies via filtering techniques. Numer Methods Water Resour, 5, 1–162.Google Scholar
  51. 51.
    Saad, Y. (1994). ILUT: a dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1, 387–402.Google Scholar
  52. 52.
    Santschi, P.H., & Honeyman, B.D. (1989). Radionuclides in aquatic environments. Radiation Physics and Chemistry, 2(34), 213–240.Google Scholar
  53. 53.
    Struijs, R. (1994). A Multi-Dimensional Upwind Discretization Method for the Euler Equations on Unstructured Grids. The Netherlands: PhD Thesis, University of Delft.Google Scholar
  54. 54.
    Suh, K., Jeong, H., Kim, E., Hwang, W., Han, M. (2006). Verification of the Lagrangian particle model using the ETEX experiment. Annals of Nuclear Energy, 33, 1159–1163.Google Scholar
  55. 55.
    Suh, K.-S., Han, M.-H., Jung, S.-H., Lee, C.-W. (2009). Numerical simulation for a long-range dispersion of a pollutant using Chernobyl data. Mathematical and Computer Modelling, 49, 337–343.Google Scholar
  56. 56.
    TEPCO. (2011). (Tokyo Electricity Power Corporation). Available at: http://www.tepco.co.jp/en/.
  57. 57.
    Terada, H., Katata, G., Chino, M., Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. Journal of Environmental Radioactivity, 112, 141–154.Google Scholar
  58. 58.
    Tsujino, H., Motoi, T., Ishikawa, I., Hirabata, M., Nakano, H., Yamanaka, G., Yasuda, T., Ishizaki, H. (2010). Reference manual for the meteorological research institute community ocean model (MRI.COM) version 3. Technical reports of the MRI. 59 meteorological research institute, Tsukuba, Japan.Google Scholar
  59. 59.
    Usui, N., Ishizaki, S., Fujii, Y., Tsujino, H., Yasuda, T., Kamachi, M. (2006). Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Advances in Space Research 37.Google Scholar
  60. 60.
    Vives i Batlle, J., Beresford, N.A., Beaugelin-Seiller, K., Bezhenar, R., Brown, J., Cheng, J.J., Cujic, M., Dragovic, S., Duffa, C., Fiévet, B., Hosseini, A., Jung, K.T., Kamboj, S., Keum, D.K., Kryshev, A., LePoire, D., Maderich, V., Min, B.I., Periáñez, R., Sazykina, T., Suh, K.S., Yu, C., Wang, C., Heling, R. (2016). Inter-comparison of dynamic models for radionuclides transfer to marine biota in a Fukushima accident scenario. J. Environ. Radioactivity, 153, 31–50.Google Scholar
  61. 61.
    Yasuda, I. (2003). Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59, 389–402.Google Scholar
  62. 62.
    Yasuda, I., Okuda, K., Hirai, M., Ogawa, Y., Mizuno, K., Kudoh, H. (1988). Short-term variations of the Tsugaru Warm Current in autumn. Bull. Tohoku Reg. Fish. Res. Lab., 50, 153–191.Google Scholar
  63. 63.
    Zhang, Y., & Baptista, A.M. (2008). SELFE: a semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Modelling, 21, 71–96.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Radiological Protection and Nuclear Safety – IRSNFontenay-aux-RosesFrance
  2. 2.Electricity of France – EDF R&DLaboratory for Hydraulics Saint-VenantChatouFrance

Personalised recommendations