Environmental Modeling & Assessment

, Volume 24, Issue 1, pp 37–48 | Cite as

Water Balance Modeling of Temporary Ponding in a Drained Prairie Pothole Wetland

  • Keith E. SchillingEmail author
  • Stephanie R. Then
  • Charles D. Ikenberry


Farmed pothole depressions, common in the Prairie Pothole Region, frequently hold water during wet periods and play an important role in ecosystem dynamics such as flood retention and hosting migratory waterfowl. In this study, we developed a spreadsheet-based daily water budget model of a drained and farmed pothole in Hamilton County, Iowa, to evaluate how site-specific characteristics affect the frequency, depth, and duration of surface ponding. For a 3-year period characterized by a range of precipitation, the model predicted that on an annual basis ponded water would be present in the pothole approximately 14 to 47% of the time. Total ponding days ranged from 51 to 173 days year−1 and maximum ponding depth ranged from 112 to 334 mm. Infiltration rate, catchment-to-pothole ratio, and the presence of a surface intake had the largest impact on ponding depth and duration. Results of this study have implications for management of farmed and drained potholes and we can envision using the PPWB model to test potential strategies for pothole management from both agricultural profitability and ecological perspectives.


Prairie pothole Temporary ponding Tile drainage Model Infiltration Farmed wetland 


Funding Information

Funds for this project were provided, in part, from a Wetland Program Development Grant from the US Environmental Protection Agency (CD 97723601).


  1. 1.
    Urban, D. L. (2005). Modeling ecological processes across scales. Ecology, 86, 1996–2006.CrossRefGoogle Scholar
  2. 2.
    Miller, B. A., Crumpton, W. G., & van der Valk, A. G. (2009). Spatial distribution of historical wetland classes on the Des Moines Lobe, Iowa. Wetlands, 29, 1146–1152.CrossRefGoogle Scholar
  3. 3.
    U.S. Fish and Wildlife Service (USFWS). (2008). Birds of conservation concern 2008. United States Department of Interior, Fish and Wildlife Service, Division of Migratory Bird Management, Arlington, Virginia.Google Scholar
  4. 4.
    Kanwar, R. S., Johnson, H. P., Schult, D., Fenton, T. E., & Hickman, R. D. (1983). Drainage needs and returns in north-central Iowa. Transactions of ASAE, 26, 457–0464.CrossRefGoogle Scholar
  5. 5.
    van der Valk, A. G., & Pederson, R. L. (2003). The SWANCC decision and its implications for prairie potholes. Wetlands, 23, 590–596.CrossRefGoogle Scholar
  6. 6.
    Fipps, G., & Skaggs, R. (1991). Simple methods for predicting flow to drains. Journal of Irrigation and Drainage Engineering, 117, 881–896.CrossRefGoogle Scholar
  7. 7.
    Hatfield, J. L., Allmaras, R. R., Rehm, G. W., & Lowery, B. (1998). Ridge tillage for corn and soybean production: environmental quality impacts. Soil Tillage Research, 48, 145–154.CrossRefGoogle Scholar
  8. 8.
    Bishop, R. A., Joens, A. J., & Zohrer, J. (1998). Iowa’s wetlands, present and future with a focus on prairie potholes. Journal of the Iowa Academy of Science, 88, 11–16.Google Scholar
  9. 9.
    Kenne, M. C. (2006). Shorebird usage of spring sheet-water pools. Iowa Bird Life, 76, 179.Google Scholar
  10. 10.
    LaGrange, T. G., & Dinsmore, J. D. (1989). Habitat use by mallards during spring migration through central Iowa. J Wildlife Management, 53, 1076–1081.CrossRefGoogle Scholar
  11. 11.
    Shaw, D. A., Vanderkamp, G., Conly, F. M., Pietroniro, A., & Martz, L. (2012). The fill–spill hydrology of prairie wetland complexes during drought and deluge. Hydrological Procedure, 26, 3147–3315.CrossRefGoogle Scholar
  12. 12.
    Skagen, S. K. (2006). Migration stopovers and the conservation of arctic-breeding calidridine sandpipers. The Auk, 123, 313–322.CrossRefGoogle Scholar
  13. 13.
    Skagen, S. K., & Knopf, F. L. (1993). Toward conservation of midcontinental shorebird migrations. Conservation Biology, 7, 533–541.CrossRefGoogle Scholar
  14. 14.
    Kent, T. H., & Dinsmore, J. J. (1996). Birds in Iowa. T.H. Kent.Google Scholar
  15. 15.
    Tiner, R. W. (2003). Geographically isolated wetlands of the United States. Wetlands, 23, 494–516.CrossRefGoogle Scholar
  16. 16.
    Murphy, K. T., & Dinsmore, S. J. (2015). Waterbird use of sheetwater wetlands in Iowa’s Prairie Pothole Region. Wetlands.
  17. 17.
    Ahmad, N., Kanwar, R. S., Kaspar, T. C., & Bailey, T. B. (1992). Effect of soil surface submergence and a water table on vegetative growth and nutrient uptake of corn. Transactions of the ASAE, 35(4), 1173–1177.CrossRefGoogle Scholar
  18. 18.
    Kanwar, R. S., Baker, J. L., & Mukhtar, S. (1988). Excessive soil water effects at various stages of development on the growth and yield of corn. Transactions of ASAE, 31(1), 133–0141.CrossRefGoogle Scholar
  19. 19.
    Huang, S., Young, C., Abdul-Aziz, O. I., Dahal, D., & Feng, M. (2013). Simulating the water budget of a prairie pothole complex from LiDAR and hydrological models in North Dakota, USA. Hydrological Sciences Journal, 58, 1434–1444.CrossRefGoogle Scholar
  20. 20.
    Kreymborg, L. R., & Forman, S. M. (2001). Modeling the hydrologic functions of wetland prairie potholes. Wetlands Eng River Restor, 2001, 1–12.Google Scholar
  21. 21.
    SCS. (1986). Urban hydrology for small watersheds. US Soil Conservation Service. Technical Release 55:13.Google Scholar
  22. 22.
    Shaw, D. A., Pietroniro, A., & Martz, L. (2013). Topographic analysis for the Prairie Pothole Region of Western Canada. Hydrological Procedure, 27, 3105–3114.Google Scholar
  23. 23.
    Arenas, A. A., Politano, M., Schilling, K., & Weber, L. (2016). Investigating hydrologic connectivity of a drained Prairie Pothole Region wetland complex using a fully integrated, physically-based model. Wetlands.
  24. 24.
    Roth, J. L., & Capel, P. D. (2012). The hydrology of a drained topographic depression with an agricultural field in north-central Iowa. Transactions of the ASABE, 55, 1801–1814.CrossRefGoogle Scholar
  25. 25.
    Schilling K. E. & Dinsmore S. (2018). Monitoring the wildlife, hydrology and water quality of drained wetlands of the Des Moines Lobe, Northern Iowa: introduction to special feature. Wetlands.
  26. 26.
    Schilling, K. E., Jacobson, P. J., Streeter, M. T., & Jones, C. S. (2016). Groundwater hydrology and quality in drained wetlands of the Des Moines Lobe in Iowa. Wetlands.
  27. 27.
    Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.Google Scholar
  28. 28.
    Lu, J., Sun, G., McNulty, S. G., & Amatya, D. M. (2005). A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of Am Water Resource Association, 41, 621–633.CrossRefGoogle Scholar
  29. 29.
    Chiew, F., Kamaladasa, N., Malano, H., & McMahon, T. (1995). Penman-Monteith, FAO-24 reference crop evapotranspiration and class-A pan data in Australia. Agricultural Water Management, 28(9), 21.Google Scholar
  30. 30.
    Skagen, S. K., Sharpe, P. B., Waltermire, R. G., & Dillon, M. B. (1999). Biogeographical profiles of shorebird migration in midcontinental North America. Biological Science Report USGS/BRD/BSR--2000-0003. Denver: U.S. Government Printing Office, 167 pp.Google Scholar
  31. 31.
    Huffman, R., Fangmeier, D., Elliot, W., Workman, S., & Schwab, G. (2011). Soil and water conservation engineering (6th ed.). St. Joseph: ASABE ISBN 1-892769-79-4.Google Scholar
  32. 32.
    Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., ..., & Smith, M. (2006). A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 81(1), 1–22.Google Scholar
  33. 33.
    Chin, D. A. (2012). Water-resources engineering (3rd ed.). Pearson.Google Scholar
  34. 34.
    Dunne, T., Zhang, W., & Aubry, B. F. (1991). Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resources Research, 27, 2271–2285.CrossRefGoogle Scholar
  35. 35.
    McGinty, W. A., Smeins, F. E., & Merrill, L. B. (1979). Influence of soil, vegetation, and grazing management on infiltration rate and sediment production of Edwards Plateau rangeland. Journal of Range Management, 32, 33–37.CrossRefGoogle Scholar
  36. 36.
    Meek, B. D., Rechel, E., Carter, L. M., DeTar, W. R., & Urie, A. (1992). Infiltration rate of a sandy loam soil: effects of traffic, tillage, and plant roots. Soil Science Society of America Journal, 56, 908–913.CrossRefGoogle Scholar
  37. 37.
    Hantush, M. S. (1967). Growth and decay of groundwater-mounds in response to uniform percolation. Water Resources Research, 3, 227–234.CrossRefGoogle Scholar
  38. 38.
    Carleton, G. B. (2010). Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins. U.S. Geological Survey Scientific Investigations Report, 2010, 5102.Google Scholar
  39. 39.
    Logsdon, S. D., Schilling, K. E., Hernandez-Ramirez, G., Prueger, J. H., Hatfield, J. L., & Sauer, T. J. (2010). Field estimation of specific yield in a central Iowa crop field. Hydrological Procedure, 24, 1369–1377.Google Scholar
  40. 40.
    Schilling, K. E., McLellan, E., & Bettis, E. A. (2013). Letting wet spots be wet: restoring natural bioreactors in the dissected glacial landscape. Environmental Management, 52, 1440–1452.CrossRefGoogle Scholar
  41. 41.
    Nielsen, R. B. (2011). Effects of flooding or ponding on young corn. Purdue University, Agronomy Department. Available at
  42. 42.
    Ritter, W., & Beer, C. (1969). Yield reduction by controlled flooding of corn. Transactions of the ASABE, 12, 46–0047.CrossRefGoogle Scholar
  43. 43.
    Dideriksen, R. O. (1983). Soil survey of Hamilton County, Iowa. U S Department of Agriculture Soil Conservation Service.Google Scholar
  44. 44.
    Galatowitsch, S. M., & van der Valk, A. G. (1996). The vegetation of restored and natural prairie wetlands. Ecological Applications, 6, 102–112.CrossRefGoogle Scholar
  45. 45.
    Crumpton, W. G., Kovacic, D. A., Hey, D. L., & Kostel, J. A. (2006). Potential of restored and constructed wetlands to reduce nutrient export from agricultural watersheds in the Corn Belt. In Final report: Gulf hypoxia and local water quality concerns workshop. American Society of Agricultural and Biological Engineers, St. Joseph, MI.Google Scholar
  46. 46.
    Jones, M. (2015). Farmed potholes: money maker or profit taker? Advance: a publication of the Iowa Soybean Association Research Programs.Google Scholar
  47. 47.
    Mushet, D. M., Calhoun, A. J. K., Alexander, L. C., Cohen, M. J., DeKeyser, E. S., Fowler, L., Lane, C. R., Lang, M. W., Rains, M. C., & Walls, S. C. (2015). Geographically isolated wetlands: rethinking a misnomer. Wetlands, 35, 423–431.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Iowa Geological SurveyUniversity of IowaIowa CityUSA
  2. 2.HDR, Inc.Des MoinesUSA
  3. 3.FYRA EngineeringDes MoinesUSA

Personalised recommendations