Environmental Modeling & Assessment

, Volume 23, Issue 3, pp 277–288 | Cite as

Effects of Topographic Heterogeneity on Coarse Resolution Grid-Based Runoff Simulation—Assessment for Three River Basins in Peninsular Malaysia

  • Chee-Loong WongEmail author
  • Z. Yusop
  • Raymond Venneker
  • Stefan Uhlenbrook


This paper investigates the effects of topographic heterogeneity on the runoff response simulated by a 0.05 degree (approximately 5.5 km) spatial resolution distributed hydrological model for the Pahang, Kelantan, and Muda river basins (25,600, 11,900, and 4010 km2, respectively) in Peninsular Malaysia. Daily simulations were carried out and assessed against observed streamflow for the period 1999–2004. Topographic structure was characterized by means of subgrid terrain slope to guide the decomposition of hydrological parameters over the model grid. The results show improved simulation skill for all three basins compared to a traditional runoff production parameterization scheme that does not take into account the subgrid topographic variability. However, other factors related to morphological heterogeneity and variability in physical terrain conditions should be considered in future work in order to characterize the hydrological heterogeneity. The present methodology may be of potential for further development of large-scale, coarse resolution grid-based hydrological models without adding structural model complexity and without affecting parameter parsimony.


Topographic structure Distributed hydrological modeling Runoff production Streamflow routing Large-scale hydrology 



The authors thank the Department of Irrigation and Drainage Malaysia (DID) for providing the discharge station data. SRTM data are distributed by the National Aeronautics and Space Administration (NASA) through HydroSHEDS data are distributed by the Conservation Science Program of World Wildlife Fund (WWF), in partnership with the US Geological Survey (USGS) through


  1. 1.
    Kerkhoven, E., & Gan, T. Y. (2006). A modified ISBA surface scheme for modeling the hydrology of Athabasca River basin with GCM-scale data. Advances in Water Resources, 29, 808–826.CrossRefGoogle Scholar
  2. 2.
    Lohmann, D., Raschke, E., Nijssen, B., & Lettenmaier, D. P. (1998). Regional scale hydrology: II. Application of VIC-2L model to the Weser River, Germany. Hydrological Sciences - Journal - des Sciences hydrologiques, 43, 143–158.CrossRefGoogle Scholar
  3. 3.
    Arnell, N. W. (1999). A simple water balance model for the simulation of streamflow over a large geographic domain. Journal of Hydrology, 217, 314–335.CrossRefGoogle Scholar
  4. 4.
    Yang, D., & Musiake, K. (2003). A continental scale hydrological model using the distributed approach and its application to Asia. Hydrological Processes, 17, 2855–2869. Scholar
  5. 5.
    Zulkafli, Z., Buytaert, W., Onof, C., Lavado, W., & Guyot, J. L. (2013). A critical assessment of the JULES land surface model hydrology for humid tropical environments. Hydrology and Earth System Sciences, 17(3), 1113–1132. Scholar
  6. 6.
    Gudmundsson, L., Wagener, T., Tallaksen, L. M., & Engeland, K. (2012). Evaluation of nine large-scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resources Research, 48(11), W11504. Scholar
  7. 7.
    Dumenil, L., & Todini, A. (1992). A rainfall-runoff scheme for use in he Hamburg climate model. In J. P. O'Kane (Ed.), Advances in theoretical hydrology. A tribute to James Dooge, European geophysical society series on hydrological sciences (pp. 129–156). Amsterdam: Elsevier.CrossRefGoogle Scholar
  8. 8.
    Nijssen, B., O'Donnell, G. M., Lettenmaier, D. P., Lohmann, D., & Wood, E. F. (2001). Predicting the discharge of global rivers. Journal of Climate, 14(15), 3307–3323.CrossRefGoogle Scholar
  9. 9.
    Oki, T., Agata, Y., Kanae, S., Saruhashi, T., Yang, D., & Musiake, K. (2001). Global assessment of current water resources using total runoff integrating pathways. Hydrological Sciences - Journal des Sciences hydrologiques, 46(6), 983–995.CrossRefGoogle Scholar
  10. 10.
    Döll, P., Kasper, F., & Lehner, B. (2003). A global hydrological model for deriving water availability indicators: Model tuning and validation. Journal of Hydrology, 270, 105–134.CrossRefGoogle Scholar
  11. 11.
    Alcamo, J., Flörke, M., & Märker, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences - Journal - des Sciences hydrologiques, 52, 247–275.CrossRefGoogle Scholar
  12. 12.
    Harding, R. J., Weedon, G. P., van Lanen, H. A. J., & Clark, D. B. (2014). The future for global water assessment. Journal of Hydrology, 518(Part B), 186–193. Scholar
  13. 13.
    Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., & Thielen, J. (2016). Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling & Software, 75, 68–76. Scholar
  14. 14.
    Xu, C.-Y., & Singh, V. P. (2004). Review on regional water resources assessment models under stationary and changing climate. Water Resources Management, 18, 591–612.CrossRefGoogle Scholar
  15. 15.
    Bell, V. A., Kay, A. L., Jones, R. G., & Moore, R. J. (2007). Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrology and Earth System Sciences, 11(1), 532–549. Scholar
  16. 16.
    Bell, V. A., Kay, A. L., Jones, R. G., Moore, R. J., & Reynard, N. S. (2009). Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. Journal of Hydrology, 377(3–4), 335–350. Scholar
  17. 17.
    Lohmann, D., Raschke, E., Nijssen, B., & Lettenmaier, D. P. (1998). Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences - Journal des Sciences hydrologiques, 43, 131–141.CrossRefGoogle Scholar
  18. 18.
    Yang, D., Herath, S., & Musiake, K. (2002). A hillslope-based hydrological model using catchment area and width functions. Hydrological Sciences - Journal - des Sciences hydrologiques, 47, 49–65.CrossRefGoogle Scholar
  19. 19.
    Yang, D., Herath, S., & Musiake, K. (2001). Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation. Hydrological Processes, 15, 2085–2099.CrossRefGoogle Scholar
  20. 20.
    Dingman, S. L. (1978). Drainage density and streamflow: A closer look. Water Resources Research, 14, 1183–1187.CrossRefGoogle Scholar
  21. 21.
    Beven, K. J., Wood, E. F., & Sivapalan, M. (1988). On hydrological heterogeneity — Catchment morphology and catchment response. Journal of Hydrology, 100(1–3), 353–375.CrossRefGoogle Scholar
  22. 22.
    Wong, C. L., Liew, J., Yusop, Z., Ismail, T., Venneker, R., & Uhlenbrook, S. (2016). Rainfall characteristics and regionalization in peninsular Malaysia based on a high resolution gridded data set. Water, 8(11), 500.CrossRefGoogle Scholar
  23. 23.
    JICA. (1995). Comprehensive management plan of Muda River basin - final report. Tokyo: Japan International Cooperation Agency.Google Scholar
  24. 24.
    DID. (2009). DID manual. Volume 4 - hydrology and water resources. Kuala Lumpur, Malaysia: Department of Irrigation and Drainage Malaysia.Google Scholar
  25. 25.
    Wong, C. L., Venneker, R., Jamil, A. B. M., & Uhlenbrook, S. (2011). Development of a gridded daily hydrometeorological data set for peninsular Malaysia. Hydrological Processes, 25, 1009–1020. Scholar
  26. 26.
    Essery, R. L. H., Best, M. J., Betts, R. A., & Cox, P. M. (2003). Explicit representation of subgrid heterogeneity in a GCM land surface scheme. Journal of Hydrometeorology, 4, 530–543.CrossRefGoogle Scholar
  27. 27.
    Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., & Wilson, M. F. (1993). Biosphere atmosphere transfer scheme (BATS) for the NCAR community climate model (Vol. TN-387+STR, NCAR Tech. Note): National Center for Atmospheric Research, Boulder, Colorado.Google Scholar
  28. 28.
    Brutsaert, W. (2005). Hydrology. An Introduction: Cambridge Univerity Press.Google Scholar
  29. 29.
    Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., & Chen, F. (1996). Simple water balance model for estimating runoff at different spatial and temporal scales. Journal of Geophysical Research, 101D, 7461–7475. Scholar
  30. 30.
    Wong, C. L., Yusop, Z., Ismail, T., & Venneker, R. (submitted). Application of a hydrological land surface model to water resources management in Peninsular Malaysia. Paper presented at the The Seventh International Conference on Geotechnique, Construction Materials and Environment, GEOMATE 2017, Tsu City, Mie, Japan.Google Scholar
  31. 31.
    Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54, 1593–1600.Google Scholar
  32. 32.
    Olivera, F., & Raina, R. (2003). Development of large scale gridded river networks from vector stream data. Journal of the American Water Resources Association, 2108, 1235–1248.CrossRefGoogle Scholar
  33. 33.
    Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45, RG2004. Scholar
  34. 34.
    Lehner, B., Verdin, K., & Jarvis, A. (2008). HydroSHEDS technical documentation Washington. DC: World Wildlife Fund US.Google Scholar
  35. 35.
    Leopold, L. B., & Maddock, J. T. (1953). The hydraulic geometry of stream channels and some physiographic implications. United States Geological Survey Professional, Paper 252.Google Scholar
  36. 36.
    Hazalizah, B. H. (2010). The hydraulic geometry in relation to hydrological characteristics of major river basins in Peninsular Malaysia. Unpublished MSc, UNESCO-IHE, Delft.Google Scholar
  37. 37.
    Leopold, L. B. (1994). A view of the river. Cambridge, MA: Harvard University Press.Google Scholar
  38. 38.
    Park, C. C. (1977). World-wide variations in hydraulic geometry exponents of stream channels: An analysis and some observations. Journal of Hydrology, 33, 133–146.CrossRefGoogle Scholar
  39. 39.
    Horton, R. E. (1932). Drainage basin characteristics. Transactions of the American Geophysical Union, 13, 350–361.CrossRefGoogle Scholar
  40. 40.
    Harlin, J. M. (1984). Watershed morphometry and time to hydrograph peak. Journal of Hydrology, 67, 141–154.CrossRefGoogle Scholar
  41. 41.
    Pennock, D. J., Zebarth, B. J., & de Jong, E. (1987). Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma, 40(3–4), 297–315.CrossRefGoogle Scholar
  42. 42.
    Maidment, D. R., Olivera, F., Calver, A., Eatherall, A., & Fraczek, W. (1996). Unit hydrograph derived from a spatially distributed velocity field. Hydrological Processes, 10, 831–844.CrossRefGoogle Scholar
  43. 43.
    Cunge, J. (1969). On the subject of a flood propagation computation method (Muskingum method). Journal of Hydraulic Research, 7, 205–230.CrossRefGoogle Scholar
  44. 44.
    Ponce, V. M. (1986). Diffusion wave modeling of catchment dynamics. Journal of Hydraulic Engineering, 112, 716–727.CrossRefGoogle Scholar
  45. 45.
    Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.Google Scholar
  46. 46.
    Leopold, L. B., Wolman, G. M., & Miller, J. P. (1964). Fluvial processes in geomorphology. San Francisco: W.H. Freeman and Company.Google Scholar
  47. 47.
    Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I - a discussion of principles. Journal of Hydrology, 10, 282–290.CrossRefGoogle Scholar
  48. 48.
    Murphy, A. H. (1988). Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116, 2417–2424.CrossRefGoogle Scholar
  49. 49.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipies in C. The Art of Scientific Computing (Second Edition ed.): Cambridge University Press.Google Scholar
  50. 50.
    Ajami, N. K., Gupta, H., Wagener, T., & Sorooshian, S. (2004). Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298, 112–135.CrossRefGoogle Scholar
  51. 51.
    Wong, C. L., Venneker, R., Jamil, A. B. M., & Uhlenbrook, S. (2010). Development of a gridded daily hydrometeorological data set for peninsular Malaysia. Hydrological Processes.
  52. 52.
    DID. (2003). National Register of river basins: Final report on updating of condition of flooding in Malaysia. Kuala Lumpur: Department of Irrigation and Drainage, Malaysia.Google Scholar
  53. 53.
    Julien, P. Y., Ghani, A. A., Zakaria, N. A., Abdulla, R., & Chang, C. K. (2010). Case study: Flood mitigation of the Muda river, Malaysia. Journal of Hydraulic Engineering, 136(4), 251–261. Scholar
  54. 54.
    Yamazaki, D., Oki, T., & Kanae, S. (2009). Deriving a global river network map and its sub-grid topographic characteristics from a fine resolution flow direction map. Hydrology and Earth System Sciences, 13, 2241–2251.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chee-Loong Wong
    • 1
    • 2
    Email author
  • Z. Yusop
    • 1
  • Raymond Venneker
    • 3
  • Stefan Uhlenbrook
    • 4
  1. 1.Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable EnvironmentUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Department of Irrigation and Drainage MalaysiaJalan Sultan SalahuddinKuala LumpurMalaysia
  3. 3.UNESCO-IHE Institute for Water EducationDelftThe Netherlands
  4. 4.Division of Water SciencesUNESCO Villa La ColombellaPerugiaItaly

Personalised recommendations