Environmental Modeling & Assessment

, Volume 23, Issue 2, pp 157–164 | Cite as

Design, Modelling and Assessment of Emission Scenarios Resulting from a Network of Wood Biomass Boilers

  • Federica PognantEmail author
  • Matteo Bo
  • Chi Vuong Nguyen
  • Pietro Salizzoni
  • Marina Clerico


The use of wood biomass as a fuel for domestic and industrial heating systems allows for a reduction of CO2 emissions at a global scale, but it may also result in worse local air quality conditions, due to their emissions of particulate matter. The aim of this study is to assess the actual trend of atmospheric pollution in a study area, assuming that all heating systems are replaced by small size biomass boilers linked to the buildings through district heating network. Ground level concentrations of particulate matter, emitted by different heating systems, are therefore evaluated through numerical simulations performed by means of an atmospheric dispersion model (Sirane). As a first step, we have compared the environmental impact of a woodchip boilers network with that given by the use of traditional heating systems, i.e. wood stoves and natural gas boilers. As a second step, we have analysed the impact of such a network taking into account different emission scenarios, related to different boilers operating conditions. Results show that the environmental performances of a woodchip boilers network can be optimized by combining it with other renewable sources of energy devoted to the supply of hot water. The adopted analysis methodology can be applied to other real or hypothetic punctual sources on the territory.


Wood biomass Particulate matter Atmospheric emissions Pollutant dispersion modelling Environmental sustainability Air quality 


  1. 1.
    Eurostat (2015). Forestry statistics in detail.Google Scholar
  2. 2.
    Stolarski, M. J., Krzyżaniak, M., Warmiński, K., & Śnieg, M. (2013). Energy, economic and environmental assessment of heating a family house with biomass. Energy and Buildings, 66, 395–404.CrossRefGoogle Scholar
  3. 3.
    Verma, V. K., Bram, S., & De Ruyck, J. (2009). Small scale biomass heating systems: Standards, quality labelling and market driving factors—an EU outlook. Biomass and Bioenergy, 33(10), 1393–1402.CrossRefGoogle Scholar
  4. 4.
    Mendoza, G. A., & Prabhu, R. (2014). Development of a methodology for selecting criteria and indicators of sustainable forest management: a case study on participatory assessment. Environmental Management, 26(6), 659–673.CrossRefGoogle Scholar
  5. 5.
    Madlener, R., & Koller, M. (2007). Economic and CO2 mitigation impacts of promoting biomass heating systems: an input–output study for Vorarlberg, Austria. Energy Policy, 35(12), 6021–6035.CrossRefGoogle Scholar
  6. 6.
    Meyer, N. K. (2012). Particulate, black carbon and organic emissions from small-scale residential wood combustion appliances in Switzerland. Biomass and Bioenergy, 36, 31–42.CrossRefGoogle Scholar
  7. 7.
    Bruschweiler, E. D., Danuser, B., Huynh, C. K., Wild, P., Schupfer, P., Vernez, D., Boiteux, P., & Hopf, N. B. (2012). Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations. Frontiers in Oncology, 2, 148.CrossRefGoogle Scholar
  8. 8.
    Arshadi, M., Geladi, P., Gref, R., & Fjällström, P. (2009). Emission of volatile aldehydes and ketones from wood pellets under controlled conditions. The Annals of Occupational Hygiene, 53(8), 797–805.Google Scholar
  9. 9.
    Forest Europe (2015). State of Europe’s forests 2015.Google Scholar
  10. 10.
    Paletto, A., Meo, I. D., Cantiani, M. G., & Cocciardi, D. (2013). Balancing wood market demand and common property rights: a case study of a community in the Italian Alps. Journal of Forest Research, 19(5), 417–426.CrossRefGoogle Scholar
  11. 11.
    Bo, M., Clerico, M., & Pognant, F. (2015). Application of risk analysis to improve environmental sustainability of forest yards in wood-energy chain. International Scientific Journal, Journal of Environmental Science, 2015, 125–130.Google Scholar
  12. 12.
    Nussbaumer, T. (2003). Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy & Fuels, 17(6), 1510–1521.CrossRefGoogle Scholar
  13. 13.
    Tissari, J., Lyyränen, J., Hytönen, K., Sippula, O., Tapper, U., Frey, A., Saarmio, K., Pennanen, A. S., Hillamo, R., Salonen, R. O., Hirvonen, M.-R., & Jokiniemi, J. (2008). Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmospheric Environment, 42(34), 7862–7873.CrossRefGoogle Scholar
  14. 14.
    Tissari, J., Hytönen, K., Lyyränen, J., & Jokiniemi, J. (2007). A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmospheric Environment, 41(37), 8330–8344.CrossRefGoogle Scholar
  15. 15.
    Hays, M. D., Smith, N. D., Kinsey, J., Dong, Y., & Kariher, P. (2003). Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption—GC/MS. Journal of Aerosol Science, 34(8), 1061–1084.CrossRefGoogle Scholar
  16. 16.
    Purvis, C. R., McCrillis, R. C., & Kariher, P. H. (2000). Fine particulate matter (PM) and organic speciation of fireplace emissions. Environmental Science & Technology, 34(9), 1653–1658.CrossRefGoogle Scholar
  17. 17.
    Caseiro, A., Bauer, H., Schmidl, C., Pio, C. A., & Puxbaum, H. (2009). Wood burning impact on PM10 in three Austrian regions. Atmospheric Environment, 43(13), 2186–2195.CrossRefGoogle Scholar
  18. 18.
    Favez, O., Cachier, H., Sciare, J., Sarda-Estève, R., & Martinon, L. (2009). Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France. Atmospheric Environment, 43(22–23), 3640–3644.CrossRefGoogle Scholar
  19. 19.
    Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141.CrossRefGoogle Scholar
  20. 20.
    Boldo, E., Medina, S., Le Tertre, A., Hurley, F., Mucke, H.-G., Ballester, F., Aguilera, I., & Eilstein, D. (2006). Apheis: health impact assessment of long-term exposure to PM2.5. European Journal of Epidemiology, 21(6), 449–458.CrossRefGoogle Scholar
  21. 21.
    ISPRA (2015). Qualità dell’ambiente urbano—XI Rapporto. [Online]. Available: Accessed 02 Sep 2016.
  22. 22.
    Pizzo, G., & Clerico, M. (2012). Safety health impacts of particulate matter from excavations work sites. American Journal of Environmental Sciences, 8(4), 466–472.CrossRefGoogle Scholar
  23. 23.
    ISPRA (2012). Fattori di emissione per le sorgenti di combustione stazionarie in Italia. [Online]. Available: Accessed 07 Oct 2016.
  24. 24.
    Orasche, J., Seidel, T., Hartmann, H., Schnelle-Kreis, J., Chow, J. C., Ruppert, H., & Zimmermann, R. (2012). Comparison of emissions from wood combustion. Part 1: emission factors and characteristics from different small-scale residential heating appliances considering particulate matter and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential of particle-bound organic species. Energy & Fuels, 26(11), 6695–6704.CrossRefGoogle Scholar
  25. 25.
    Boman, C., Nordin, A., & Thaning, L. (2003). Effects of increased biomass pellet combustion on ambient air quality in residential areas—a parametric dispersion modeling study. Biomass and Bioenergy, 24(6), 465–474.CrossRefGoogle Scholar
  26. 26.
    Williams, A., Jones, J. M., Ma, L., & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38(2), 113–137.CrossRefGoogle Scholar
  27. 27.
    Ballard-Tremeer, G., & Jawurek, H. H. (1996). Comparison of five rural, wood-burning cooking devices: efficiencies and emissions. Biomass and Bioenergy, 11(5), 419–430.CrossRefGoogle Scholar
  28. 28.
    Leskinen, J., Tissari, J., Uski, O., Virén, A., Torvela, T., Kaivosoja, T., Lamberg, H., Nuutinen, I., Kettunen, T., Joutsensaari, J., Jalava, P. I., Sippula, O., Hirvonen, M.-R., & Jokiniemi, J. (2014). Fine particle emissions in three different combustion conditions of a wood chip-fired appliance—particulate physico-chemical properties and induced cell death. Atmospheric Environment, 86, 129–139.CrossRefGoogle Scholar
  29. 29.
    Jäppinen, E., Korpinen, O.-J., Laitila, J., & Ranta, T. (2014). Greenhouse gas emissions of forest bioenergy supply and utilization in Finland. Renewable and Sustainable Energy Reviews, 29, 369–382.CrossRefGoogle Scholar
  30. 30.
    Martire, S., Castellani, V., & Sala, S. (2015). Carrying capacity assessment of forest resources: enhancing environmental sustainability in energy production at local scale. Resources, Conservation and Recycling, 94, 11–20.CrossRefGoogle Scholar
  31. 31.
    Vallios, I., Tsoutsos, T., & Papadakis, G. (2009). Design of biomass district heating systems. Biomass and Bioenergy, 33(4), 659–678.CrossRefGoogle Scholar
  32. 32.
    Ghafghazi, S., Sowlati, T., Sokhansanj, S., & Melin, S. (2010). A multicriteria approach to evaluate district heating system options. Applied Energy, 87(4), 1134–1140.CrossRefGoogle Scholar
  33. 33.
    Noussan, M., Cerino Abdin, G., Poggio, A., & Roberto, R. (2014). Biomass-fired CHP and heat storage system simulations in existing district heating systems. Applied Thermal Engineering, 71(2), 729–735.CrossRefGoogle Scholar
  34. 34.
    Soulhac, L., Salizzoni, P., Mejean, P., Didier, D., & Rios, I. (2012). The model SIRANE for atmospheric urban pollutant dispersion; part II, validation of the model on a real case study. Atmospheric Environment, 49, 320–337.CrossRefGoogle Scholar
  35. 35.
    Soulhac, L., Salizzoni, P., Cierco, F.-X., & Perkins, R. (2011). The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. Atmospheric Environment, 45(39), 7379–7395.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG Switzerland 2017

Authors and Affiliations

  1. 1.DIATIPolitecnico di TorinoTurinItaly
  2. 2.Laboratoire de Mécanique des Fluides et d’Acoustique UMR CNRS 5509University of Lyon, Ecole Centrale de Lyon, INSA LyonEcullyFrance

Personalised recommendations