Environmental Modeling & Assessment

, Volume 22, Issue 6, pp 535–548 | Cite as

How to Take into Account Uncertainty in Species Extinction Probabilities for Phylogenetic Conservation Prioritization

  • Alain Billionnet


In this article, we are concerned with the general problem of choosing from a set of taxa T a subset S to protect in order to try to contribute to halting biodiversity loss as efficiently as possible given limited resources. The protection of a taxon decreases its extinction probability, and the impact of protecting the taxa of S is measured by the resulting expected phylogenetic diversity (ePD) of the set T. The primary challenge posed by this approach lies in determining the extinction probability of a taxon (protected or unprotected). To deal with this difficulty, the uncertainty about the extinction probabilities can be described through a set of possible scenarios, each corresponding to different extinction probability values for each taxon. We show how to determine an “optimal robust set” of taxa to protect, defined as the set of taxa that minimizes the maximum “regret,” i.e., the maximum relative gap, over all the scenarios, between (1) the ePD of T obtained by protecting the taxa of this set and (2) the ePD of T which would be produced by protecting the subset of taxa optimal for the considered scenario. In our experimental conditions covering 100 cases, this gap is almost always less than 1%. Consequently, the ePD of T obtained by protecting the taxa of the optimal robust set is not far from the maximum ePD of T that could have been obtained if we had known the true scenario. In other words, a way of escaping (in large part, at least) from the uncertainty related to the extinction probabilities of the taxa consists of choosing to protect those belonging to the optimal robust set. We also compare the optimal robust set to other relevant subsets of T.


Biodiversity conservation Phylogenetic diversity Protected taxa Extinction risk Robustness Optimization Integer programming Experiments 



I thank Dan Faith for the useful comments on a previous version of the manuscript.


  1. 1.
    Akçakaya, H. R., Ferson, S., Burgman, M. A., Keith, D. A., Mace, G. M., & Todd, C. R. (2000). Making consistent IUCN classifications under uncertainty. Conservation Biology, 14, 1001–1013.CrossRefGoogle Scholar
  2. 2.
    Billionnet, A. (2013). Solution of the generalized Noah’s ark problem. Systematic Biology, 62, 147–156.CrossRefGoogle Scholar
  3. 3.
    Billionnet, A. (2015). Designing robust nature reserves under uncertain survival probabilities. Environmental Modeling & Assessment, 20, 383–397.CrossRefGoogle Scholar
  4. 4.
    Bordewich, M., & Semple, C. (2012). Budgeted nature reserve selection with diversity feature loss and arbitrary split systems. Journal of Mathematical Biology, 64, 69–85.CrossRefGoogle Scholar
  5. 5.
    Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079–1087.CrossRefGoogle Scholar
  6. 6.
    Carvalho, S. B., Brito, J. C., Crespo, E. G., Watts, M. E., & Possingham, H. P. (2011). Conservation planning under climate change: toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biological Conservation, 144, 2020–2030.CrossRefGoogle Scholar
  7. 7.
    Chao, A., Chiu, C.-H., & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B, 365, 3599–3609.CrossRefGoogle Scholar
  8. 8.
    Collen, B. (2015). Conservation prioritization in the context of uncertainty. Animal Conservation, 18, 315–317.CrossRefGoogle Scholar
  9. 9.
    CPLEX 12.6, 2013. IBM ILOG CPLEX 12.6 reference manual.Google Scholar
  10. 10.
    Davies, T. J., & Buckley, L. B. (2011). Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B, 366, 2414–2425.CrossRefGoogle Scholar
  11. 11.
    Faith, D. P. (1992a). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.CrossRefGoogle Scholar
  12. 12.
    Faith, D. P. (1992b). Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics, 8, 361–373.CrossRefGoogle Scholar
  13. 13.
    Faith, D. P. (2008). Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation Biology, 22, 1461–1470.CrossRefGoogle Scholar
  14. 14.
    Faith, D. P. (2013). Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework. Annals of the New-York Academy of Sciences, 1289, 69–89.CrossRefGoogle Scholar
  15. 15.
    Faith, D. P. (2015). Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370.Google Scholar
  16. 16.
    Faith , DP. 2016. The PD phylogenetic diversity framework: linking evolutionary history to feature diversity for biodiversity conservation. In: Pellens R., Grandcolas P. (eds), Biodiversity Conservation and Phylogenetic Systematics, Topics in Biodiversity and Conservation 14, Springer.Google Scholar
  17. 17.
    Faith, D. P., & Richards, Z. T. (2012). Climate change impacts on the tree of life: changes in phylogenetic diversity illustrated for Acropora corals. Biology, 1, 906–932.CrossRefGoogle Scholar
  18. 18.
    Faller, B., Pardi, F., & Steel, M. (2008). Distribution of phylogenetic diversity under random extinction. Journal of Theoretical Biology, 251, 286–296.CrossRefGoogle Scholar
  19. 19.
    Forest, F., Grenyer, R., Rouget, M., Davies, T. J., Cowling, R. M., Faith, D. P., Balmford, A., Manning, J. C., Procheş, Ş., van der Bank, M., Reeves, G., Hedderson, T. A. J., & Savolainen, V. (2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757–760.CrossRefGoogle Scholar
  20. 20.
    Forest, F., Crandall, K. A., Chase, M. W., & Faith, D. P. (2015). Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philosophical Transactions of the Royal Society B, 370, 20140002.CrossRefGoogle Scholar
  21. 21.
    Fourer, R., Gay, D. M., & Kernighan, B. W. (1993). AMPL, a modeling language for mathematical programming. Danvers (MA): Boyd & Fraser Publishing Company.Google Scholar
  22. 22.
    Haight, R. G., & Travis, L. E. (2008). Reserve design to maximize species persistence. Environmental Modeling & Assessment, 13, 243–253.CrossRefGoogle Scholar
  23. 23.
    Hartmann, K., & Steel, M. (2006). Maximizing phylogenetic diversity in biodiversity conservation: greedy solutions to the Noah’s ark problem. Systematic Biology, 55, 644–651.CrossRefGoogle Scholar
  24. 24.
    Hickey, G., Blanchette, M., Carmi, P., Maheshwari, A., & Zeh, N. (2011). An approximation algorithm for the Noah’s ark problem with random features loss. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 551–556.CrossRefGoogle Scholar
  25. 25.
    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C., & Baillie, J. E. M. (2007). Mammals on the EDGE: conservation priorities based on threat and phylogeny. PloS One, 2(3), e296.CrossRefGoogle Scholar
  26. 26.
    Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  27. 27.
    Meynard, C. N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., & Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography, 20, 893–903.CrossRefGoogle Scholar
  28. 28.
    Minh, B. Q., Klaere, S., & von Haeseler, A. (2006). Phylogenetic diversity within seconds. Systematic Biology, 55, 769–773.CrossRefGoogle Scholar
  29. 29.
    Moilanen, A., Wintle, B. A., Elith, J., & Burgman, M. (2006). Uncertainty analysis for regional-scale reserve selection. Conservation Biology, 20, 1688–1697.CrossRefGoogle Scholar
  30. 30.
    Mooers, A. O., Faith, D. P., & Maddison, W. P. (2008). Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PloS One, 3, e3700.CrossRefGoogle Scholar
  31. 31.
    Nunes, L. A., Turvey, S. T., & Rosindell, J. (2015). The price of conserving avian phylogenetic diversity: a global prioritization approach. Philosophical Transactions of the Royal Society B, 370.Google Scholar
  32. 32.
    O’Hanley, J. R., Church, R. L., & Gilless, J. K. (2007). Locating and protecting critical reserve sites to minimize expected and worst-case losses. Biological Conservation, 134, 130–141.CrossRefGoogle Scholar
  33. 33.
    Pardi F. 2009. Algorithms on phylogenetic trees. PhD thesis, University of Cambridge.Google Scholar
  34. 34.
    Pardi, F., & Goldman, N. (2005). Species choice for comparative genomics: no need for cooperation. PLoS Genetics, 1, e71.CrossRefGoogle Scholar
  35. 35.
    Pardi, F., & Goldman, N. (2007). Resource-aware taxon selection for maximizing phylogenetic diversity. Systematic Biology, 56, 431–444.CrossRefGoogle Scholar
  36. 36.
    Redding, D. W., & Mooers, A. O. (2006). Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20, 1670–1678.CrossRefGoogle Scholar
  37. 37.
    Regan, H. M., Colyvan, M., & Burgman, M. A. (2002). A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological Applications, 12, 618–628.CrossRefGoogle Scholar
  38. 38.
    Snyder, S. A., Haight, R. G., & ReVelle, C. S. (2004). A scenario optimization model for dynamic reserve site selection. Environmental Modeling & Assessment, 9, 179–187.CrossRefGoogle Scholar
  39. 39.
    Savage, L. J. (1951). The theory of statistical decision. Journal of the American Statistical Association, 46, 55–67.CrossRefGoogle Scholar
  40. 40.
    Steel, M. (2005). Phylogenetic diversity and the greedy algorithm. Systematic Biology, 54, 527–529.CrossRefGoogle Scholar
  41. 41.
    Veron, S., Davies, T. J., Cadotte, M. W., Clergeau, P., & Pavoine, S. (2017). Predicting loss of evolutionary history: where are we? Biological Reviews Cambridge Philosophical Society, 92, 271–291.CrossRefGoogle Scholar
  42. 42.
    Weitzman, M. L. (1998). The Noah’s ark problem. Econometrica, 66, 1279–1298.CrossRefGoogle Scholar
  43. 43.
    Williams, P. H., & Araújo, M. B. (2002). Apples, oranges, and probabilities: integrating multiple factors into biodiversity conservation with consistency. Environmental Modeling and Assessment, 7, 139–151.CrossRefGoogle Scholar
  44. 44.
    Wilson, K. A., Lulow, M., Burger, J., Fang, Y. C., Andersen, C., Olson, D., O’Connell, M., & McBride, M. F. (2011). Optimal restoration: accounting for space, time and uncertainty. Journal of Applied Ecology, 48, 715–725.CrossRefGoogle Scholar
  45. 45.
    Witting, L., & Loeschcke, V. (1995). The optimization of biodiversity conservation. Biological Conservation, 71, 205–207.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG Switzerland 2017

Authors and Affiliations

  1. 1.Laboratoire CEDRIC, École Nationale Supérieure d’Informatique pour l’Industrie et l’EntrepriseÉvry cedexFrance

Personalised recommendations