Environmental Modeling & Assessment

, Volume 21, Issue 2, pp 211–219 | Cite as

Designing Connected and Compact Nature Reserves

  • Alain BillionnetEmail author


It is generally accepted that for many species, the ability to get around a reserve promotes their long-term persistence. Here, we measure the ease with which species can move by two spatial criteria: (i) the connectivity of the reserve, that is to say, the possibility to go through the whole reserve without leaving it, and (ii) the compactness of the reserve, that is to say, the remoteness of the sites in relation to each other, the distance between two sites being measured by the shortest distance to travel to get from one site to another without leaving the reserve. To protect the reserve of external disturbances, we also impose a connectivity constraint for the area outside the reserve. This article presents a method based on integer linear programming to define connected and compact reserves. Computational experiments carried out on artificial instances with 400 sites and 100 species are presented to illustrate the effectiveness of the approach.


Design of nature reserves Spatial criteria Connectivity Compactness Integer linear programming Experiments 



The author would like to thank the anonymous reviewers for their helpful and constructive comments.

This work was supported by the Laboratory CEDRIC at the École Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise.


  1. 1.
    Alagador, D. (2011). Quantitative methods in spatial conservation planning. Thesis, Instituto Superior de Agronomia, Universidade Técnica de Lisboa.Google Scholar
  2. 2.
    Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: column generation for solving huge integer programs. Operations Research, 46, 316–329.CrossRefGoogle Scholar
  3. 3.
    Billionnet, A. (2012). Designing an optimal connected nature reserve. Applied Mathematical Modelling, 36, 2213–2223.CrossRefGoogle Scholar
  4. 4.
    Billionnet, A. (2013). Mathematical optimization ideas for biodiversity conservation. European Journal of Operational Research, 231, 514–534.CrossRefGoogle Scholar
  5. 5.
    Briers, R. A. (2002). Incorporating connectivity into reserve selection procedures. Biological Conservation, 103, 77–83.CrossRefGoogle Scholar
  6. 6.
    Camm, J. D., Polasky, S., Solow, A., & Csuti, B. (1996). A note on optimal algorithms for reserve site selection. Biological Conservation, 78, 353–355.CrossRefGoogle Scholar
  7. 7.
    Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J. P., & Weintraub, A. (2013). Imposing connectivity constraints in forest planning models. Operations Research, 61, 824–836.CrossRefGoogle Scholar
  8. 8.
    Cerdeira, J. O., Gaston, K. J., & Pinto, L. S. (2005). Connectivity in priority area selection for conservation. Environmental Modeling and Assessment, 10, 183–192.CrossRefGoogle Scholar
  9. 9.
    Cerdeira, J. O., Pinto, L. S., Cabeza, M., & Gaston, K. J. (2010). Species specific connectivity in reserve-network design using graphs. Biological Conservation, 143, 408–415.CrossRefGoogle Scholar
  10. 10.
    Church, R. L., Stoms, D. M., & Davis, F. W. (1996). Reserve selection as a maximal covering location problem. Biological Conservation, 76, 105–112.CrossRefGoogle Scholar
  11. 11.
    Conrad, J. M., Gomes, C. P., van Hoeve, W. J., Sabharwal, A., & Suter, J. F. (2012). Wildlife corridors as a connected subgraph problem. Journal of Environmental Economics and Management, 63, 1–18.CrossRefGoogle Scholar
  12. 12.
    CPLEX. (2013). IBM ILOG CPLEX version 12.6.Google Scholar
  13. 13.
    Fischer, D. T., & Church, R. L. (2003). Clustering and compactness in reserve site selection: an extension of the biodiversity management area selection model. Forest Science, 49, 555–565.Google Scholar
  14. 14.
    Fischer, D. T., & Church, R. L. (2005). The SITES reserve selection system: a critical review. Environmental Modeling and Assessment, 10, 215–228.CrossRefGoogle Scholar
  15. 15.
    Fourer, R., Gay, D. M., & Kernighan, B. W. (1993). AMPL, a modeling language for mathematical programming. Danvers: Boyd & Fraser Publishing Company.Google Scholar
  16. 16.
    Groeneveld, R. A. (2010). Species-specific spatial characteristics in reserve site selection. Ecological Economics, 69, 2307–2314.CrossRefGoogle Scholar
  17. 17.
    Jafari, N., & Hearne, J. (2013). A new method to solve the fully connected reserve network design problem. European Journal of Operational Research, 231, 202–209.CrossRefGoogle Scholar
  18. 18.
    Lindenmayer, D., et al. (2008). A checklist for ecological management of landscapes for conservation. Ecology Letters, 11, 78–91.Google Scholar
  19. 19.
    Margules, C., Nichols, A., & Pressey, R. (1988). Selecting networks of reserves to maximize biological diversity. Biological Conservation, 43, 63–76.CrossRefGoogle Scholar
  20. 20.
    Marianov, V., ReVelle, C., & Snyder, S. (2008). Selecting compact habitat reserves for species with differential habitat size needs. Computers & Operations Research, 35, 475–487.CrossRefGoogle Scholar
  21. 21.
    McDonnell, M., Possingham, H., Ball, I., & Cousins, E. (2002). Mathematical methods for spatially cohesive reserve design. Environmental Modeling and Assessment, 7, 107–114.CrossRefGoogle Scholar
  22. 22.
    Moilanen, A., Wilson, K.A., Possingham, H.P. (Eds.) (2009). Spatial conservation prioritization. Oxford: Oxford University Press.Google Scholar
  23. 23.
    Önal, H., & Briers, R. A. (2002). Incorporating spatial criteria in optimum reserve network selection. Proceedings of the Royal Society of London B, 269, 2437–2441.CrossRefGoogle Scholar
  24. 24.
    Önal, H., & Briers, R. A. (2005). Designing a conservation reserve network with minimal fragmentation: a linear integer programming approach. Environmental Modeling and Assessment, 10, 193–202.CrossRefGoogle Scholar
  25. 25.
    Önal, H., & Briers, R. A. (2006). Optimal selection of a connected reserve network. Operations Research, 54, 379–388.CrossRefGoogle Scholar
  26. 26.
    Polasky, S., Camm, J., Solow, A., Csuti, B., White, D., & Ding, R. (2000). Choosing reserve networks with incomplete species information. Biological Conservation, 94, 1–10.CrossRefGoogle Scholar
  27. 27.
    Possingham, H. P., Ball, I. R., & Andelman, S. (2000). Mathematical methods for identifying representative reserve networks. In S. Ferson & M. Burgman (Eds.), Quantitative methods for conservation biology (pp. 291–305). New York: Springer.CrossRefGoogle Scholar
  28. 28.
    Pressey, R. L., Possingham, H. P., & Day, J. R. (1997). Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biological Conservation, 80, 207–219.CrossRefGoogle Scholar
  29. 29.
    ReVelle, C. S., Williams, J. C., & Boland, J. J. (2002). Counterpart models in facility location science and reserve selection science. Environmental Modeling and Assessment, 7, 71–80.CrossRefGoogle Scholar
  30. 30.
    Sarkar, S., Pressey, R. L., Faith, D. P., Margules, C. R., Fuller, T., Stoms, D. M., Moffett, A., Wilson, K. A., Williams, K. J., Williams, P. H., & Andelman, S. (2006). Biodiversity conservation planning tools: present status and challenges for the future. Annual Review of Environment and Resources, 31, 123–159.CrossRefGoogle Scholar
  31. 31.
    Underhill, L. (1994). Optimal and suboptimal reserve selection algorithms. Biological Conservation, 35, 85–87.CrossRefGoogle Scholar
  32. 32.
    Urban, D., & Keitt, T. (2001). Landscape connectivity: a graph theoretic perspective. Ecology, 82, 1205–1218.CrossRefGoogle Scholar
  33. 33.
    Vogiatzis, C., Veremyev, A., Pasiliao, E.L., Pardalos, P.M. (2014). An integer programming approach for finding the most and the least central cliques. Optimization Letters, available online.Google Scholar
  34. 34.
    Walteros, J. L., Vogiatzis, C., Pasiliao, E. L., & Pardalos, P. M. (2014). Integer programming models for the multidimensional assignment problem with star costs. European Journal of Operational Research, 235, 553–568.CrossRefGoogle Scholar
  35. 35.
    Wang, Y., & Önal, H. (2013). Designing a connected nature reserve using a network flow theory approach. Acta Ecologica Sinica, 33, 253–259.CrossRefGoogle Scholar
  36. 36.
    Williams, J. C. (2008). Optimal reserve site selection with distance requirements. Computers & Operations Research, 35, 448–498.CrossRefGoogle Scholar
  37. 37.
    Williams, J. C., ReVelle, C. S., & Levin, S. A. (2005). Spatial attributes and reserve design models: a review. Environmental Modeling and Assessment, 10, 163–181.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CEDRIC-ENSIIEEvry cedexFrance

Personalised recommendations