Environmental Modeling & Assessment

, Volume 20, Issue 4, pp 383–397 | Cite as

Designing Robust Nature Reserves Under Uncertain Survival Probabilities

  • Alain BillionnetEmail author


We address the problem of optimal selection of sites to constitute a nature reserve which ensures that a given set of species has fixed survival probabilities. This classic problem has already been considered in the literature of conservation biology. The originality of this article is to consider that the values of the survival probabilities of each species in each potential site may be subject to a certain error while assuming that the number of sites where these probabilities are wrong is limited. We thus define a set of possible survival probability values in each site. We then show how to determine, by solving a relatively simple mixed-integer linear program, an optimal robust reserve, i.e., a reserve which ensures that each species has a certain survival probability whatever the values taken by the survival probabilities in each site, in the set of possible values. The fact of being able to formulate the search for an optimal robust reserve by a mixed-integer linear program provides an easy way to take into account additional constraints on the selection of sites such as, for example, spatial constraints. We report some computational experiments carried out on many hypothetical landscapes to illustrate the concept of robust reserve and show the effectiveness of the approach.


Conservation planning Reserve selection Site selection algorithm Uncertainty Integer programming Experiments 


  1. 1.
    Arthur, J. L., Haight, R. G., Montgomery, C. A., & Polasky, S. (2002). Analysis of the threshold and expected coverage approaches to the probabilistic reserve site selection problem. Environmental Modeling and Assessment, 7, 81–89.CrossRefGoogle Scholar
  2. 2.
    Arthur, J. L., Camm, J. D., Haight, R. G., Montgomery, C. A., & Polasky, S. (2004). Weighing conservation objectives: maximum expected coverage versus endangered species protection. Ecological Applications, 14, 1936–1945.CrossRefGoogle Scholar
  3. 3.
    Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52, 35–53.CrossRefGoogle Scholar
  4. 4.
    Billionnet, A. (2011). Solving the probabilistic reserve selection problem. Ecological Modelling, 222, 546–554.CrossRefGoogle Scholar
  5. 5.
    Camm, J. D., Norman, S. K., Polasky, S., & Solow, A. R. (2002). Nature reserve site selection to maximize expected species covered. Operations Research, 50, 946–955.CrossRefGoogle Scholar
  6. 6.
    Church, R. L., Stoms, D. M., & Davis, F. W. (1996). Reserve selection as a maximal covering location problem. Biological Conservation, 76, 105–112.CrossRefGoogle Scholar
  7. 7.
    Collinge, S. K. (2000). Effects of grassland fragmentation on insect species loss, colonization, and movement patterns. Ecology, 81, 2211–2226.CrossRefGoogle Scholar
  8. 8.
    Conrad, J. M., Gomes, C. P., van Hoeve, W. J., Sabharwal, A., & Suter, J. F. (2012). Wildlife corridors as a connected subgraph problem. Journal of Environmental Economics and Management, 63, 1–18.CrossRefGoogle Scholar
  9. 9.
    CPLEX. (2013). IBM ILOG CPLEX 12.5 Reference Manual.Google Scholar
  10. 10.
    Crist, M. (2004). Landscape connectivity: an essential element of land management. Science and Policy Brief. Washington: The Wilderness Society.Google Scholar
  11. 11.
    Csuti, B., Polasky, S., Williams, P., Pressey, R., Camm, J., Kershaw, M., Kiester, R., Downs, B., Hamilton, R., Huso, M., & Sahr, K. (1997). A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biological Conservation, 80, 83–97.CrossRefGoogle Scholar
  12. 12.
    Drechsler, M. (2005). Probabilistic approaches to scheduling reserve selection. Biological Conservation, 122, 253–262.CrossRefGoogle Scholar
  13. 13.
    Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.CrossRefGoogle Scholar
  14. 14.
    Fischer, D. T., & Church, R. L. (2003). Clustering and compactness in reserve site selection: an extension of the biodiversity management area selection model. Forest Science, 49, 555–565.Google Scholar
  15. 15.
    Fischer, D. T., & Church, R. L. (2005). The SITES reserve selection system: a critical review. Environmental Modeling and Assessment, 10, 215–228.CrossRefGoogle Scholar
  16. 16.
    Fourer, R., Gay, D. M., & Kernighan, B. W. (1993). AMPL, a modeling language for mathematical programming. Danvers, USA: Boyd & Fraser Publishing Company.Google Scholar
  17. 17.
    Haight, R. G., ReVelle, C. S., & Snyder, S. A. (2000). An integer optimization approach to a probabilistic reserve site selection problem. Operations Research, 48, 697–708.CrossRefGoogle Scholar
  18. 18.
    Haight, R. G., & Travis, L. E. (2008). Reserve design to maximize species persistence. Environmental Modeling and Assessment, 13, 243–253.CrossRefGoogle Scholar
  19. 19.
    Harrison, S., & Bruna, E. (1999). Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography, 22, 225–232.CrossRefGoogle Scholar
  20. 20.
    Helzer, C. J., & Jelinski, D. E. (1999). The relative importance of patch area and perimeter-area ratio to grassland and breeding birds. Ecological Applications, 9, 1448–1458.Google Scholar
  21. 21.
    Jafari, N., & Hearne, J. (2013). A new method to solve the fully connected Reserve Network Design Problem. European Journal of Operational Research, 231, 202–209.CrossRefGoogle Scholar
  22. 22.
    Juutinen, A., & Mönkkönen, M. (2007). Alternative targets and economic efficiency of selecting protected areas for biodiversity conservation in boreal forest. Environmental & Resource Economics, 37, 713–732.CrossRefGoogle Scholar
  23. 23.
    Memtsas, D. P. (2003). Multiobjective programming methods in the reserve selection problem. European Journal of Operational Research, 150, 640–652.CrossRefGoogle Scholar
  24. 24.
    Moilanen, A., Runge, M., Elith, J., Tyre, A., Carmel, Y., Fegraus, E., Wintle, B., Burgman, M., & Ben-Haim, Y. (2006). Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 199, 115–124.CrossRefGoogle Scholar
  25. 25.
    Moilanen, A., Wilson, K.A., & Possingham, H.P. (Eds), 2009. Spatial conservation prioritization. Oxford University Press.Google Scholar
  26. 26.
    Ohman, K., & Lamas, T. (2005). Reducing forest fragmentation in long-term forest planning by using the shape index. Forest Ecology and Management, 212, 346–357.CrossRefGoogle Scholar
  27. 27.
    Önal, H., & Yanprechaset, P. (2007). Site accessibility and prioritization of nature reserves. Ecological Economics, 60, 763–773.CrossRefGoogle Scholar
  28. 28.
    Polasky, S., Camm, J. D., Solow, A. R., Csuti, B., White, D., & Ding, R. (2000). Choosing reserve networks with incomplete species information. Biological Conservation, 94, 1–10.CrossRefGoogle Scholar
  29. 29.
    Polasky, S., Camm, J. D., & Garber-Yonts, B. (2001). Selection biological reserves cost-effectively: an application to terrestrial vertebrate conservation in Oregon. Land Economics, 77, 68–78.CrossRefGoogle Scholar
  30. 30.
    Pressey, R. L., Possingham, H. P., & Margules, C. R. (1996). Optimality in reserve selection algorithms: when does it matter and how much? Biological Conservation, 76, 259–267.CrossRefGoogle Scholar
  31. 31.
    ReVelle, C. S., Williams, J. C., & Boland, J. J. (2002). Counterpart models in facility location science and reserve selection science. Environmental Modeling and Assessment, 7, 71–80.CrossRefGoogle Scholar
  32. 32.
    Rodrigues, A. S. L., & Gaston, K. J. (2002). Optimisation in reserve selection procedures—why not? Biological Conservation, 107, 123–129.CrossRefGoogle Scholar
  33. 33.
    Rosing, K. E., ReVelle, C. S., & Williams, J. C. (2002). Maximizing species representation under limited resources: a new and efficient heuristic. Environmental Modeling and Assessment, 7, 91–98.CrossRefGoogle Scholar
  34. 34.
    Sarkar, S., Pappas, C., Garson, J., Aggarwal, A., & Cameron, S. (2004). Place prioritization for biodiversity conservation using probabilistic surrogate distribution data. Diversity and Distributions, 10, 125–133.CrossRefGoogle Scholar
  35. 35.
    Strange, N., Thorsen, B. J., & Bladt, J. (2006). Optimal reserve selection in a dynamic world. Biological Conservation, 131, 33–41.CrossRefGoogle Scholar
  36. 36.
    Toth, S. F., Haight, R. G., & Rogers, L. W. (2011). Dynamic reserve selection: optimal land retention with land-price feedbacks. Operations Research, 59, 1059–1078.CrossRefGoogle Scholar
  37. 37.
    Tóth, S. F., Haight, R. G., Snyder, S. A., George, S., Miller, J. R., Gregory, M. S., & Skibbe, A. M. (2009). Reserve selection with minimum contiguous area restrictions: an application to open space protection planning in suburban Chicago. Biological Conservation, 142, 1617–1627.CrossRefGoogle Scholar
  38. 38.
    Williams, P. H., & Araujo, M. B. (2000). Using probability of persistence to identify important areas for biodiversity conservation. Proceedings of the Royal Society of London B, 267, 1959–1966.CrossRefGoogle Scholar
  39. 39.
    Williams, J. C., ReVelle, C. S., & Levin, S. A. (2005). Spatial attributes and reserve design models: a review. Environmental Modeling and Assessment, 10, 163–181.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratoire CEDRIC, École Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise, 1, square de la RésistanceEvryFrance

Personalised recommendations