Environmental Modeling & Assessment

, Volume 19, Issue 5, pp 389–405 | Cite as

How Cost-Effective is a Mixed Policy Targeting the Management of Three Agricultural N-pollutants?

  • Cyril BourgeoisEmail author
  • Nosra Ben Fradj
  • Pierre-Alain Jayet


This paper assesses the cost-effectiveness of a mixed policy in attempts to reduce the presence of three nitrogen pollutants: NO 3, N 2O, and NH 3. The policy under study combines a tax on nitrogen input and incentives promoting perennial crops assumed to require low input. We show that the mixed policy improves the cost-effectiveness of regulation with regard to nitrates, whereas no improvement occurs, except for a very low level of subsidy in some cases, for gas pollutants. A quantitative analysis provides an assessment of impacts in terms of land use, farmers’ income, and nitrogen losses throughout France and at river-basin scale.


Cost-effectiveness Mixed policy N-input tax Land use policy Nitrogen pollutants Bioeconomic model Mathematical linear programming Miscanthus 



This paper is based on research activities funded by PIREN-Seine, an interdisciplinary research programme dedicated to the study of the environment in the Seine river basin in France. We also kindly thank Susan Becker for editorial advice on English language use.


  1. 1.
    Addiscott, T. (1996). Fertilizers and nitrate leaching. Issues in Environmental Science and Technology, 5, 1–26.CrossRefGoogle Scholar
  2. 2.
    Aftab, A., Hanley, N., Baiocchi, G. (2010). Integrated regulation of nonpoint pollution: combining managerial controls and economic instruments under multiple environmental targets. Ecological Economics, 70(1), 24–33.CrossRefGoogle Scholar
  3. 3.
    Aftab, A., Hanley, N., Kampas, A. (2007). Co-ordinated environmental regulation: controlling non-point nitrate pollution while maintaining river flows. Environmental and Resource Economics, 38(4), 573–593.CrossRefGoogle Scholar
  4. 4.
    Balana, B. B., Vinten, A., Slee, B. (2011). A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications. Ecological Economics, 70(6), 1021–1031.CrossRefGoogle Scholar
  5. 5.
    Beale, C. V., & Long, S. P. (1995). Can perennial c4 grasses attain high efficiencies of radiant energy conversion in cool climates?Plant Cell & Environment, 18, 641–650.CrossRefGoogle Scholar
  6. 6.
    Berntsen, J., Petersen, B. M., Jacobsen, B. H., Olesen, J. E., Hutchings, N. (2003). Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems, 76(3), 817–839.CrossRefGoogle Scholar
  7. 7.
    Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., et al. (2003). An overview of the crop model. European Journal of agronomy, 18(3–4), 309–332.CrossRefGoogle Scholar
  8. 8.
    Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M., Ruget, F., Nicoullaud, B., Gate, P., Devienne-Barret, F., Antonioletti, R., Durr, C., et al. (1998). Stics: a generic model for the simulation of crops and their water and nitrogen balances. i. theory and parameterization applied to wheat and corn. Agronomie, 18(5–6), 311–346.CrossRefGoogle Scholar
  9. 9.
    Cantelaube, P., Jayet, P.-A., Carré, F., Zakharov, P., Bamps, C. (2012). Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level. Land Use Policy, 29, 35–44.CrossRefGoogle Scholar
  10. 10.
    Chakir, R. (2009). Spatial downscaling of agricultural land-use data: an econometric approach using cross entropy. Land Economics, 85(2), 238.Google Scholar
  11. 11.
    Christian, D. G., Riche, A. B., Yates, N. E. (2008). Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products, 28, 320–327.CrossRefGoogle Scholar
  12. 12.
    Clifton-Brown, J. C., Breuer, J., Jones, M. B. (2007). Carbon mitigation by the energy crop, miscanthus. Global Change Biology, 13, 2296–2307.CrossRefGoogle Scholar
  13. 13.
    De Cara, S., Houzé, M., Jayet, P. A. (2005). Methane and nitrous oxide emissions from agriculture in the EU: a spatial assessment of sources and abatement costs. Environmental and Resource Economics, 32, 551–583.CrossRefGoogle Scholar
  14. 14.
    De Cara, S., & Jayet, P.-A. (2000). Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France. European Review of Agricultural Economics, 27(3), 281–303.CrossRefGoogle Scholar
  15. 15.
    European Commission (2000). Water framework directive 60/2000/EC. Technical report, the European parliament and the council.Google Scholar
  16. 16.
    European Union (2009). Decision on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020. Technical report, council of the European union 406/2009/EC,official journal of the European union, Brussels, Belgium, L140.Google Scholar
  17. 17.
    Galko, E., & Jayet, P. (2011). Economic and environmental effects of decoupled agricultural support in the EU. Agricultural Economics, 42(5), 605–618.CrossRefGoogle Scholar
  18. 18.
    Godard, C., Roger-Estrade, J., Jayet, P., Brisson, N., Le Bas, C. (2008). Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU. Agricultural Systems, 97(1–2), 68–82.CrossRefGoogle Scholar
  19. 19.
    Goetz, R. U., Schmid, H., Lehmann, B. (2006). Determining the economic gains from regulation at the extensive and intensive margins. European Review of Agricultural Economics, 33(1), 1–30.CrossRefGoogle Scholar
  20. 20.
    Helfand, G. W., & House, B. W. (1995). Regulating nonpoint source pollution under heterogeneous conditions. American Journal of Agricultural Economics, 77(4), 1024–1032.CrossRefGoogle Scholar
  21. 21.
    Jayet, P., & Petsakos, A. (2013). Evaluating the efficiency of a uniform n-input tax under different policy scenarios at different scales. Environmental Modeling and Assessment, 18(1), 57–72.CrossRefGoogle Scholar
  22. 22.
    Jorgensen, U. (1997). Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass & Bioenergy, 12, 155–169.CrossRefGoogle Scholar
  23. 23.
    Kahle, P., Beuch, S., Boelcke, B., Leinweber, P., Schulten, H. (2001). Cropping of miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. European Journal of Agronomy, 15(3), 171–184.CrossRefGoogle Scholar
  24. 24.
    Lacroix, A., Beaudoin, N., Makowski, D. (2005). Agricultural water nonpoint pollution control under uncertainty and climate variability. Ecological Economics, 53(1), 115–127.CrossRefGoogle Scholar
  25. 25.
    Lankoski, J., & Ollikainen, M. (2008). Bioenergy crop production and climate policies: a von Thunen model and the case of reed canary grass in Finland. European Review of Agricultural Economics, 35(4), 519.CrossRefGoogle Scholar
  26. 26.
    Lankoski, J., & Ollikainen, M. (2011). Biofuel policies and the environment: do climate benefits warrant increased production from biofuel feedstocks?Ecological Economics, 70(4), 676–687.CrossRefGoogle Scholar
  27. 27.
    Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biomass & Bioenergy, 19(4), 209–227.CrossRefGoogle Scholar
  28. 28.
    Lewandowski, I., & Heinz, A. (2003). Delayed harvest of miscanthus influences of biomass quantity and environmental impacts of energy production. European Journal of Agronomy, 19(1), 45–63.CrossRefGoogle Scholar
  29. 29.
    Lewandowski, I., & Schmidt, U. (2006). Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agriculture Ecosystems & Environment, 112(4), 335–346.CrossRefGoogle Scholar
  30. 30.
    Mantineo, M., DAgosta, G., Copani, V., Patane, C., Cosentino, S. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114(2), 204–213.CrossRefGoogle Scholar
  31. 31.
    Miguez, F. E., Villamil, M. B., Long, S. P., Bollero, G. A. (2008). Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agricultural and Forest Meteorology, 148, 1280–1292.CrossRefGoogle Scholar
  32. 32.
    Schou, J. S., Skop, E., Jensen, J. D. (2000). Integrated agri-environmental modelling: a cost-effectiveness analysis of two nitrogen tax instruments in the Vejle Fjord watershed, Denmark. Journal of Environmental Management, 58(3), 199–212.CrossRefGoogle Scholar
  33. 33.
    Shortle, J., & Horan, R. (2001). The economics of nonpoint pollution control. Journal of Economic Surveys, 15(3), 255–289.CrossRefGoogle Scholar
  34. 34.
    Shortle, J. S., Horan, R. D., Abler, D. G. (1998). Research issues in nonpoint pollution control. Environmental and Resource Economics, 11(3–4), 571–585.CrossRefGoogle Scholar
  35. 35.
    Tayot, X., Chartier, M., Varlet-Grancher, C., Lemaire, G. (1995). Potential above-ground dry matter production of miscanthusin north-central France compared to sweet sorghum. In Biomass for energy, environment, agriculture and industry (pp. 556–564). Oxford: Elsevier.Google Scholar
  36. 36.
    Vleeshouwers, L. (1998). Potential yield of Miscanthus x giganteus in the netherlands. In: H. Kopetz, T. Weber, W. Palz, P. Chartier, G. Ferrero (Eds.), Proceedings of the 10th European conference and technology exhibition: biomass for energy and industry (pp. 1017–1019). Germany: Wurzburg.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cyril Bourgeois
    • 1
    Email author
  • Nosra Ben Fradj
    • 2
  • Pierre-Alain Jayet
    • 2
  1. 1.RITMUniversité Paris-SudSceauxFrance
  2. 2.UMR 0210 INRA- AgroParisTech Economie publiqueINRAThiverval-GrignonFrance

Personalised recommendations