Environmental Modeling & Assessment

, Volume 19, Issue 1, pp 45–55 | Cite as

Calibration and Validation of SWAP to Simulate Conjunctive Use of Fresh and Saline Irrigation Waters in Semi-Arid Regions

  • Ajit Kumar VermaEmail author
  • Suresh Kumar Gupta
  • Rajendra Kumar Isaac


Soil–Water–Atmosphere–Plant (SWAP) version 2.0 was evaluated for its capability to simulate crop growth and salinity profiles at Agra (India) located in a semi-arid region having deep water table and monsoon climate. The data of 12 conjunctive use treatment combinations simulating cyclic and mixing modes of fresh and saline water for wheat were used to calibrate and validate the model. Absolute deviations between the SWAP simulated and observed relative yields during calibration ranged from 2.5 to 2.9 %. A close agreement in the trend and values of measured and simulated soil salinity profiles was observed. Scenario building simulations carried out with the validated SWAP revealed that the maximum crop yields varied from 97 to 99 % with the best available water (EC 3.6 dS m−1) while the minimum ranged from 65 to 79 % in the treatment with all saline water. Other than this, the relative yield varied from 80 to 98 % in 10 other cyclic and mixing mode treatments. It was established that notwithstanding the seasonal build-up of salts due to saline water use, there would be no long-term build-up of salts as leaching during the monsoon season would render the soil profile salt free at the time of sowing of rabi (winter) crops. Thus, short-term field observations could be used in conjunction with SWAP to show that there seems to be an assured long-term sustainability when saline water is used in conjunctive mode with fresh water in monsoon climatic conditions with deep water table. These results are in conformity with the observation that many farmers in India are using saline and fresh water in conjunctive mode on a long-term basis.


Simulation SWAP Cyclic and mixing mode Relative yield Salinity profile Wheat 


  1. 1.
    Belmans, G., Wesseling, J. G., & Faddes, R. A. (1983). Simulation of the water balance of a cropped soil: SWATRE. Journal of Hydrology, 63, 271–286.CrossRefGoogle Scholar
  2. 2.
    Braden, H. (1985). Ein Energiehaushalts- und Verdunstungsmodell for Wasser und Stoffhaushaltsuntersuchungen landwirtschaftlich genutzer Einzugsgebiete. Mittelungen Deutsche Bodenkundliche Geselschaft, 42, 294–299.Google Scholar
  3. 3.
    Bradford, S., & Letey, J. (1992). Cyclic and blending strategies for using nonsaline and saline waters for irrigation. Irrigation Science, 13(3), 123–128.Google Scholar
  4. 4.
    Breve, M. A., Skaggs, R. W., Passons, J. E., & Gilliam, J. W. (1998). Using the DRAINMOD- N model to study effects of drainage system design and management on crop productivity, profitability and NO3- N losses in drainage water. Agricultural Water Management, 35, 227–243.CrossRefGoogle Scholar
  5. 5.
    Breve, M. A., Skaggs, R. W., Passons, J. E., Mohammad, A. T., & Gilliam, J. M. (1995). Simulation of drainage water quality with DRAINMOD. Irrigation and Drainage System, 9, 259–277.CrossRefGoogle Scholar
  6. 6.
    Chauhan, C. P. S., & Singh, R. B. (2003). Progress report of NATP on develop regional salt and water balance models. Bichpuri: Raja Balwant Singh College. 34 p.Google Scholar
  7. 7.
    Chauhan, C. P. S., Singh, R. B., & Gupta, S. K. (2008). Supplemental irrigation of wheat with saline water. Agricultural Water Management, 95, 253–258.CrossRefGoogle Scholar
  8. 8.
    Dinar, A., Letey, J., & Vaux, H. J., Jr. (1986). Optimal ratios of saline and non-saline irrigation waters for crop production. Soil Science American Journal, 50, 440–443.CrossRefGoogle Scholar
  9. 9.
    Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield, Simulation Monographs, Pudoc, Wageningen, 189p.Google Scholar
  10. 10.
    Goudriaan, J. (1977). Crop meteorology: a simulation study. Simulation monographs, Pudoc, Wageningen.Google Scholar
  11. 11.
    Grattan, S. R., & Rhoades, J. D. (1990). Irrigation with saline groundwater and drainage water. In K. K. Tanji (Ed.), Agricultural salinity assessment and management, Chap 20 (pp. 432–449). New York: American Society of Civil Engineers.Google Scholar
  12. 12.
    Gupta, G. P., Prasher, S. O., Chieng, S. T., & Mathur, I. N. (1993). Application of DRAINMOD under semi-arid conditions. Agricultural Water Management, 24, 63–80.CrossRefGoogle Scholar
  13. 13.
    Gupta, S. K. (2002). Future prospect of subsurface drainage in India. Journal of Water Management, 10, 49–57.Google Scholar
  14. 14.
    Hirekhan, M., Gupta, S. K., & Mishra, K. L. (2007). Application of WaSim to assess performance of a subsurface drainage system under semi-arid monsoon climate. Agricultural Water Management, 88, 224–234.CrossRefGoogle Scholar
  15. 15.
    Kroes, J. G., van Dam, J. C., Huygen, J., & Vervoort, R. W. (1999). Users guide of SWAP version 2.0 (Simulation of water flow, solute transport and plant growth in the soil–water–atmosphere–plant environment, Technical Document 53). DLO Winand Staring Centre: Wageningen.Google Scholar
  16. 16.
    Lamsal, K., Paudyal, G. N., & Saeed, M. (1999). Model for assessing impact of salinity on soil water availability and crop yield. Agricultural Water Management, 41, 57–70.CrossRefGoogle Scholar
  17. 17.
    Majeed, A., Stockle, C. O., & King, L. G. (1994). Computer model for managing saline for irrigation and crop growth: preliminary testing with lysimeter data. Agricultural Water Management, 26, 239–251.CrossRefGoogle Scholar
  18. 18.
    Martin, D. L., Watts, D. G., & Gilley, J. M. (1984). Model and production function for irrigation management. Journal of Irrigation and Drainage Engineering, 110(20), 149–154.CrossRefGoogle Scholar
  19. 19.
    Minhas, P. S., & Gupta, R. K. (1992). Quality of irrigation water-assessment and management (Information and publication section). New Delhi: Indian Council of Agricultural Research.Google Scholar
  20. 20.
    Naresh, R. K., Minhas, P. S., Goyal, A. K., Chauhan, C. P. S., & Gupta, R. K. (1993). Conjunctive use of saline and non-saline waters. II. Field comparison of cyclic use and mixing for wheat. Agricultural Water Management, 23, 139–148.CrossRefGoogle Scholar
  21. 21.
    Oosterbaan, R. J., Sharma, D. P., Singh, K. N., & Rao, K. V. G. K. (1990). Crop production and soil salinity: evaluation of field data from India by segmented linear regression, in: Amer, M.H., Abu-Zeid, M.A. (Eds.), Proceeding of the Symposium on Land Drainage for Salinity Control in Arid and Semi Arid Regions. 25th February–2nd March 1990, Cairo, Egypt. 3, 373–383.Google Scholar
  22. 22.
    Pasternak, D., de Malach, Y., & Barovic, I. (1986). Irrigation with brackish water under desert conditions. VII. Effect of time of application of brackish water on production of processing tomatoes. Agricultural Water Management, 12, 149–158.CrossRefGoogle Scholar
  23. 23.
    Prendergast, J. B., Rose, C. W., & Hogarth, W. L. (1994). A model for conjuctive use of groundwater and surface waters for control of soil salinity. Irrigation Science, 14, 167–175.CrossRefGoogle Scholar
  24. 24.
    Rhoades, J. D., Bingham, F. T., Letey, J., Hoffman, G. J., Pinter, P. J., Jr., & Replogle, J. A. (1989). Reuse of drainage water for irrigation: imperial valley study. Agricultural Water Management, 16, 25–26.CrossRefGoogle Scholar
  25. 25.
    Sarwar, A., & Bastiaanssen, W. G. M. (2001). Long-term effects of irrigation water conservation on crop production and environment in semiarid areas. Journal of Irrigation and Drainage Engineering, 127(6), 331–338.CrossRefGoogle Scholar
  26. 26.
    Sarwar, A., Bastiaanssen, W. G. M., & Feddes, R. A. (2001). Irrigation water distribution and long-term effects on crop and environment. Agricultural Water Management, 50, 125–140.CrossRefGoogle Scholar
  27. 27.
    Sharma, D. P., Rao, K. V. G. K., Singh, K. N., Kumbhare, P. S., & Ooterbaan, R. J. (1994). Conjunctive use of saline and non-saline irrigation waters in semi-arid regions. Irrigation Science, 15, 25–33.CrossRefGoogle Scholar
  28. 28.
    Sharma, D. P., Singh, K. N., & Rao, K. V. G. K. (1989). Reuse of saline drainage water for irrigation of wheat. Indian Farming, 39, 32–33.Google Scholar
  29. 29.
    Sharma, D. P., Singh, K. N., Rao, K. V. G. K., & Kumbhare, P. S. (1990). Response of wheat (Triticum aestivum) to re-use of saline drainage water in a sandy-loam soil. Indian Journal of Agricultural Sciences, 60(7), 448–452.Google Scholar
  30. 30.
    Sharma, D. P., Singh, K. N., Rao, K. V. G. K., & Kumbhare, P. S. (1993). Management of subsurface saline drainage water. Indian Farming, 43, 15–19.Google Scholar
  31. 31.
    Sharma, K. K., Gupta, S. K., Singh, R. P., & Chauhan, H. S. (2003). Comparison of conventional and geostatistical procedures for assessing hydraulic conductivity for drainage design. Journal of the Indian Society of Soil Science, 51, 489–495.Google Scholar
  32. 32.
    Sharma, D. P., & Rao, K. V. G. K. (1998). Strategy for long term use of saline drainage water for irrigation in semi-arid regions. Soil & Tillage Research, 48, 287–295.CrossRefGoogle Scholar
  33. 33.
    Singh, R. (2004). Simulations on direct and cyclic use of saline waters for sustaining cotton-wheat in a semi-arid area of north-west India. Agricultural Water Management, 66, 153–162.CrossRefGoogle Scholar
  34. 34.
    Singh, R. B., Minhas, P. S., Chauhan, C. P. S., & Gupta, R. K. (1992). Effect of high salinity and SAR waters on salinization, sodication and yield of pearl millet and wheat. Agricultural Water Management, 21, 93–105.CrossRefGoogle Scholar
  35. 35.
    Singh, R., & Singh, J. (1996). Irrigation planning in cotton through simulating modelling. Irrigation Science, 17, 31–36.CrossRefGoogle Scholar
  36. 36.
    Taylor, S. A., & Ashcroft, G. M. (1972). Physical Edophology (pp. 434–435). San Francisco: W.H. Freeman and Co.Google Scholar
  37. 37.
    Tedeschi, A., & Menenti, M. (2002). Simulation studies of long-term saline water use: model validation and evaluation of schedules. Agricultural Water Management, 54, 123–157.CrossRefGoogle Scholar
  38. 38.
    van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kobat, P. E. V., van Waslsum, Groenendijk, P., & Diepen, C. A. (1997). Theory of SWAP version 2.0. Department of Water Resour., Report 71. Wageningen: Wageningen Agricultural University. 167p.Google Scholar
  39. 39.
    van Genuchten, M. Th. (1983). SALT: analysis of crop salt tolerance data. Research Report No. 12. US Salinity Laboratory, USDA-ARS, Riverside, California, 50 p.Google Scholar
  40. 40.
    Vazifedoust, M., van Dam, J. C., Feddes, R. A., & Feizi, M. (2008). Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural Water Management, 95, 89–102.CrossRefGoogle Scholar
  41. 41.
    Verma, A. K., Gupta, S. K., & Isaac, R. K. (2010). Long-term use of saline drainage waters for irrigation in subsurface drained lands: simulation modelling with SWAP. Journal of Agricultural Engineering, 47, 15–23.Google Scholar
  42. 42.
    Wahba, M. A. S., Ganainy, M. E., Dayem, M. S. A., Kandil, H., & Gobran, A. (2002). Evaluation of DRAINMOD-S for simulating water table management under semi-arid condition. ICID Journal, 51(3), 213–226.Google Scholar
  43. 43.
    Wesseling, J. G., Elbers, J. A., Kabat, P., & van den Broek, B. J. (1991). SWATRE: instructions for input. Internal Note, Winand Staring Centre, Wageningen, the Netherlands. International Water logging and Salinity Research Institute, Lahore, Pakistan, 29 p.Google Scholar
  44. 44.
    Workman, S. R., & Skaggs, R. W. (1989). Comparison of two drainage simulation models using field data. Transaction ASAE, 32(6), 1933–1938.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ajit Kumar Verma
    • 1
    Email author
  • Suresh Kumar Gupta
    • 2
  • Rajendra Kumar Isaac
    • 3
  1. 1.Central Institute of Fisheries EducationMumbaiIndia
  2. 2.Central Soil Salinity Research InstituteKarnalIndia
  3. 3.Sam Higginbottom Institute of Agriculture, Technology and Sciences (SHIATS)AllahabadIndia

Personalised recommendations