Environmental Modeling & Assessment

, Volume 19, Issue 1, pp 19–34 | Cite as

Analysing Seasonal Differences between a Soil Water Balance Model and in Situ Soil Moisture Measurementsat Nine Locations Across Europe

  • Blaž KurnikEmail author
  • Geertrui Louwagie
  • Markus Erhard
  • Andrej Ceglar
  • Lučka Bogataj Kajfež


We compared soil moisture from the soil water balance model for European Water Accounting (swbEWA) with in situ observations from nine locations in three European climatic zones (continental, Mediterranean and maritime temperate), for different periods between 2003 and 2011. Despite the simplicity of the swbEWA model, the patterns of temporal changes in soil moisture content are well represented at all locations. Annual averages show that the model overestimates the soil moisture content, and that overestimations are the smallest when measurements are obtained from more than one depth. These results suggest that the relationship between simulated and observed soil moisture also depends on the number of measurements and the depth over which they are taken. In the continental climate, where snow cover and frozen soil influence soil moisture, we observe higher root mean square error values in winter months. However, in the Mediterranean and maritime temperate climates, we do not observe clear common seasonal patterns in the soil moisture profile, which makes it difficult to relate the model’s accuracy to climate. With the percentage of correctness and probability of detection measures, we tested the model performance in simulating dry versus non-dry events. The percentage of the correctly classified dry and non-dry events is higher than 84 % at all locations, whereas the probability to detect dry events is significantly lower, exceeding 50 % at only four out of nine stations. The frequency distribution of consecutive days with dry soil (CDDS) confirms the model performance: higher number of short dry periods (with less than 20 days of soil moisture near wilting point) are reproduced and observed in continental climates, whereas long dry periods (longer than 50 days) are noted in the Mediterranean climate. Overall, the statistical measures suggest that the model produces the highest accuracy in summer months at the stations in continental climates, whereas in the Mediterranean climate, the accuracy is slightly higher in the colder seasons.


Soil moisture Soil water balance In situ Modelling Europe Climate 



The authors are truly grateful to the reviewers for their comments that contributed to the substantial improvement of this manuscript. We would also like to thank the Slovenian Environment Agency for providing us with soil moisture data.


  1. 1.
    Albergel, C., Rudiger, C., Carrer, D., Calvet, J., Fritz, N., Naemi, V. (2009). An evaluation of ASCAT surface soil moisture products with in-situ observations in south France. Hydrology and Earth System Sciences, 13, 115–124.CrossRefGoogle Scholar
  2. 2.
    Albergel, C., de Rosnay, P., Gruhier, C., Munoz-Sabater, J., Hasenauer, S., Isakese, L., Kerr, Y., Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global ground based in-situ observations. Remote Sensing of Environment, 118, 215–226.CrossRefGoogle Scholar
  3. 3.
    Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization.Google Scholar
  4. 4.
    Balsamo, G., Dutra, E., Boussetta, S., Beljaars, A., Viterbo, P., van den Hurk, B. (2009). Recent advances in land surface modelling at the ECMWF. In ECMWF/GLASS workshop on land surface modelling. 9–12 November 2010, Reading.Google Scholar
  5. 5.
    Barnes, F. (2011). Estimating crop water requirement in Arizona and New Mexico. Master’s thesis, Department of Hydrology and Water Resources.Google Scholar
  6. 6.
    Bissell, C.C., & Chapman, D.A. (1992). Digital signal transmission. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. 7.
    Bossard, M., Feranec, J., Otahel, J. (2000). ClC2000 technical guidelines. Technical report. Copenhagen: European Environment Agency.Google Scholar
  8. 8.
    Brier, G.W., & Allen, R.A. (1951). Verification of weather forecasts. In Compendium of meteorology. Boston: American Meteorological Society.Google Scholar
  9. 9.
    de Rosnay, P., Drusch, M., Boone, A., Balsamo, G., Decharme, B., Harris, P., Kerr, Y., Pellarin, T., Polcher, J., Wigneron, J.-P. (2009). The AMA land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM. Journal of Geophysical Research, 114. doi: 10.1029/2008JD010724.
  10. 10.
    DeLannoy, G.J.M., Hauser, P.R., Verhoest, N.E.C., Pauwels, V.R.N., Gish, T.J. (2007). Upscaling of point soil moisture measurements to field averages at the OPE3 test site. Journal of Hydrology, 343, 1–11.CrossRefGoogle Scholar
  11. 11.
    Dorigo, W.A., Wagner, W., Hohensinn, R., Hahna, S., Paulik, C., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., Jackson, T. (2011). The international soil moisture network: a data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences Discussions, 8, 1609–1663.CrossRefGoogle Scholar
  12. 12.
    EEA (2007). ClC2006 technical guidelines. Technical report no. EEA17/2007. Copenhagen: European Environment Agency.Google Scholar
  13. 13.
    ERA (2009). CORINE land-cover Ireland. Technical report. Ireland: Environmental Protection Agency.Google Scholar
  14. 14.
    ESA (2012). SMOS maps Europe. February 2012.
  15. 15.
    FLUXNET (2013). FLUXNET: a network of regional networks. Technical report, FLUXNET.
  16. 16.
    Franz, T.E., Zreda, M., Rosolem, R., Ferre, T.P.A. (2013). A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrology and Earth System Sciences, 17, 453–460.CrossRefGoogle Scholar
  17. 17.
    Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., Sitch, S. (2003). Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286, 249–270.CrossRefGoogle Scholar
  18. 18.
    Gherboudi, I., Magagi, R., Berg, A.A., Toth, B. (2011). Soil moisture retrieval over agricultural fields from multi-polarized and multiangular Radarsat-2 SAR data. Remote Sensing of Environment, 115, 33–43.CrossRefGoogle Scholar
  19. 19.
    Gijsman, A.J., Jagtap, S.S., Jones, J.W. (2002). Wading through a swamp of complete confusion, How to choose a method for estimating soil water retention parameters for crop models. European Journal of Agronomy, 18, 75–105.CrossRefGoogle Scholar
  20. 20.
    Haylock, M.R., Hofstra, N., Klein-Tank, A.M.G., Klok, E.J., Jones, P.D., New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113, D20119. doi: 10.1029/2008JD10201.CrossRefGoogle Scholar
  21. 21.
    Hofstra, N., New, M., Sweeney, C.M. (2010). Influence of interpolation and station network density on the distribution and extreme trends of climate variables in gridded data. Climate Dynamics, 35, 841–858.CrossRefGoogle Scholar
  22. 22.
    JRC-EC. (2010). European soil data centre. Technical report. Brussels: EC-JRC.
  23. 23.
    Kampe, T.U., Johnston, B.R., Kuester, M., Keller, M. (2010). NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure. Journal of Remote Sensing, 4, 1–24.Google Scholar
  24. 24.
    Kendall, M.G., & Stuart, A. (1973). The advanced theory of statistics, Vol. 2. London: Griffin.Google Scholar
  25. 25.
    Kerr, Y.H., Waldteufel, P., Delwart, J.P., Capot, S., Boutin, J. (2010). The SMOS mission: new tool for monitoring key elements of the global water cycle. Proceedings of the IEEE.Google Scholar
  26. 26.
    Laguardia, G., & Niemeyer, S. (2008). On the comparison between the LISFLOOD modeled and the ERS/SCAT derived soil moisture estimates. Hydrology and Earth System Sciences, 12, 1–13.CrossRefGoogle Scholar
  27. 27.
    Leuning, R., Cleugh, H.A., Zegelin, S.J., Hughes, D. (2005). Carbon and water fluxes over a temperate eucalyptus forest and a tropical wet/dry savannah in Australia: measurements and comparison with Modis remote sensing estimates. Agricultural and Forest Meteorology, 129, 151–173.CrossRefGoogle Scholar
  28. 28.
    Micale, F., & Genovese, G. (2003). Methodology of the MARS crop yield forecasting system. European report 21291 EN/1-4. Brussels: EC-Joint Research Centre.Google Scholar
  29. 29.
    Mittelbach, H., Lehner, I., Seneviratne, S.I. (2012). Comparison of four soil moisture sensor types under field conditions in Switzerland. Journal of Hydrology, 430–431, 39–49.CrossRefGoogle Scholar
  30. 30.
    Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.CrossRefGoogle Scholar
  31. 31.
    Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology, 10, 282–290.CrossRefGoogle Scholar
  32. 32.
    Noilhan, J., & Mahfouf, J.-F. (1996). The ISBA land surface parameterization scheme. Global and Planetary Change, 13, 145–159.CrossRefGoogle Scholar
  33. 33.
    Peixoto, J.P., & Oort, A.H. (1992). Physics of climate. Berlin: Springer.Google Scholar
  34. 34.
    Penman, H.L. (1948). Natural evapotranspiration from open water, bare soil, and grass. Proceedings of the Royal Meteorological Society.Google Scholar
  35. 35.
    Raes, D. (2002). BUDGET: a soil water and salt balance model. Reference manual, version 5.0. Leuven: Catholic University of Leuven.Google Scholar
  36. 36.
    Rahman, M.M., Moran, M.S., Thoma, D.P., Bryant, R., Holifield, A., Collins, C.D., Jackson, T., Orr, B.J., Tischler, M. (2008). Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sensing of Environment, 112, 391–402.CrossRefGoogle Scholar
  37. 37.
    Rocha, J., Perdigão, A., Melo, R., Henriques, C. (2010). Managing water in agriculture through remote sensing applications. In: R. Reuter (Ed.) EARSeL symposium on remote sensing for science, education, and natural and cultural heritage.Google Scholar
  38. 38.
    Sandholt, I., Rasmussen, K., Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.CrossRefGoogle Scholar
  39. 39.
    Saxton, K.E., & Rawls, W.J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70, 1569–1578.CrossRefGoogle Scholar
  40. 40.
    Schmugge, T.J. (1983). Remote sensing of soil moisture: recent advances. IEEE Trans-actions on Geoscience and Remote Sensing, GE21, 145–146.Google Scholar
  41. 41.
    Schumann, G., Lunt, D.J., Valdes, P.J., de Jeu, R.A.M., Scipal, K., Bates, P.D. (2009). Assessment of soil moisture fields from imperfect climate models with uncertain satellite observations. Hydrology and Earth System Sciences Discussion, 13, 1545–1553.Google Scholar
  42. 42.
    Scipal, K. (2002). Global soil moisture retrieval from ERS Scatterometer data. PhD thesis. Austria: Vienna University of Technology.
  43. 43.
    Sheikh, V., Visser, S., Stroosnijder, L. (2009). A simple model to predict soil moisture: bridging event and continuous hydrological (BEACH) modelling. Environmental Modelling Software, 240(4), 542–556.CrossRefGoogle Scholar
  44. 44.
    Shuttleworth, J., Rosolem, R., Zreda, M., Franz, T.E. (2013). The cosmic-ray soil moisture interaction code (COSMIC) for use in data assimilation. Hydrology and Earth System Sciences Discussions, 10, 1097–1125.CrossRefGoogle Scholar
  45. 45.
    Shuttleworth, W.J., & Wallace, J.S. (2009). Calculating the water requirements of irrigated crops in Australia using the Matt-Shuttleworth approach. Transactions of the ASABE, 52, 1895–1906.CrossRefGoogle Scholar
  46. 46.
    Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, O.J., Lewis, S., Lucht, W., Sykes, M.T., Thonicke, K., Venevsky, S. (2003). Evaluation ecosystem dynamics, plant geography and terestrial carbon cycle in the LPJ dynamic global vegetation model. Global Change, 9, 161–185.CrossRefGoogle Scholar
  47. 47.
    Stjernholm, M. (2009). Corine land cover 2006. Final report on interpretation of CLC2006 in Denmark. Technical report. Denmark: NERI.Google Scholar
  48. 48.
    Sung, C.T.B., & Iba, J. (2010). Accuracy of the Saxton-Rawls method for estimating the soil water characteristics for mineral soils of malaysia. Journal of Tropical Agriculture Science, 33, 297–302.Google Scholar
  49. 49.
    Thielen, J., Bartholmes, J., Ramos, M.-H., de Roo, A. (2008). The European Flood Alert System - part 1 concepts and developments. Hydrology and Earth System Sciences Discussions, 5, 257–287.CrossRefGoogle Scholar
  50. 50.
    UN-DESA (1992). Agenda21-comprehensive plan of action to be taken globally, nationally and locally by organizations of the united nations system, governments, and major groups in every area in which human impacts on the environment Technical report. New York: UN Department of Economic and Social Affairs.Google Scholar
  51. 51.
    UN-DESA (2012). System of environmental-economic accounting for water, Technical report. New York: The Department of Economic and Social Affairs of the United Nations Secretariat.Google Scholar
  52. 52.
    van der Knijff, J., Younis, J., de Roo, A. (2009). LISFLOOD: A GIS-based distributed model for river basin scale water balance and floods simulation. JRC scientific and technical report. Brussels: EC-Joint Research Centre.Google Scholar
  53. 53.
    van Doninck, J., Peters, J., Lievens, H., De Baets, B., Verhoest, N.E.C. (2012). Accounting for seasonality in a soil moisture change detection algorithm for ASAR wide swath time series. Hydrology and Earth System Sciences, 10(16), 773–786.CrossRefGoogle Scholar
  54. 54.
    van Engelen, A., Klein Tank, A., van der Schrier, G., Klok, L. (2008). European climate assessment & dataset (ECA&D). Technical report. The Netherlands: KNMI.Google Scholar
  55. 55.
    Wagner, W., Lemoine, G., Rott, H. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70, 191–207.CrossRefGoogle Scholar
  56. 56.
    Wagner, W., Bloschl, G., Pampaloni, P., Calvet, J. (2007). Operational readiness of microwave remote sensing of soil moisture for hydrological applications. Nordic Hydrology, 38, 1–20.CrossRefGoogle Scholar
  57. 57.
    Wagner, W., Pathe, C., Doubkova, M., Sabel, D., Bartsch, A., Hasenauer, S., Blischl, G., Scipal, M., Martinez Fernandez, M., Luw, A. (2008). Temporal stability of soil moisture and radar backscatter observed by the advanced synthetic aperture radar (ASAR). Sensors, 8, 1174–1197.CrossRefGoogle Scholar
  58. 58.
    Wallace, J.S. (1995). Calculating evapotranspiration: resistance to factors. Agricultural and Forest Meteorology, 73, 353–366.CrossRefGoogle Scholar
  59. 59.
    Western, A.W., & Bloschl, G. (1999). On the spatial scaling of soil moisture. Journal of Hydrology, 217, 203–224.CrossRefGoogle Scholar
  60. 60.
    Wilks, D.S. (1995). Statistical methods in the atmospheric science. San Diego: Academic.Google Scholar
  61. 61.
    Zhang, Y., Wei, H., Nearing, M.A. (2011). Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona. Hydrology and Earth System Sciences, 150, 3171–3179.CrossRefGoogle Scholar
  62. 62.
    Zreda, M., Shuttleworth, W.J., Zeng, X., Zweck, C., Desilets, D., Franz, T., Rosolem, R. (2012). COSMOS: the cosmic-ray soil moisture observing system. Hydrology and Earth System Science, 16, 4079–4099.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Blaž Kurnik
    • 1
    Email author
  • Geertrui Louwagie
    • 2
  • Markus Erhard
    • 1
  • Andrej Ceglar
    • 2
  • Lučka Bogataj Kajfež
    • 2
  1. 1.European Environment AgencyCopenhagenDenmark
  2. 2.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations