Environmental Modeling & Assessment

, Volume 18, Issue 5, pp 533–546 | Cite as

Bias Correction Techniques to Improve Air Quality Ensemble Predictions: Focus on O3 and PM Over Portugal

  • A. MonteiroEmail author
  • I. Ribeiro
  • O. Tchepel
  • E. Sá
  • J. Ferreira
  • A. Carvalho
  • V. Martins
  • A. Strunk
  • S. Galmarini
  • H. Elbern
  • M. Schaap
  • P. Builtjes
  • A. I. Miranda
  • C. Borrego


Five air quality models were applied over Portugal for July 2006 and used as ensemble members. Each model was used, with its original set up in terms of meteorology, parameterizations, boundary conditions and chemical mechanisms, but with the same emission data. The validation of the individual models and the ensemble of ozone (O3) and particulate matter (PM) is performed using monitoring data from 22 background sites. The ensemble approach, based on the mean and median of the five models, did not improve significantly the skill scores due to large deviations in each ensemble member. Different bias correction techniques, including a subtraction of the mean bias and a multiplicative ratio adjustment, were implemented and analysed. The obtained datasets were compared against the individual modelled outputs using the bias, the root mean square error (RMSE) and the correlation coefficient. The applied bias correction techniques also improved the skill of the individual models and work equally well over the entire range of observed O3 and PM values. The obtained results revealed that the best bias correction technique was the ratio adjustment with a 4-day training period, demonstrating significant improvements for both analysed pollutants. The increase in the ensemble skill found comprehends a bias reduction of 88 % for O3, and 92 % for PM10, and also a decrease in 23 % for O3 and 43 % for PM10 in what concerns the RMSE. In addition, a spatial bias correction approach was also examined with successful skills comparing to the uncorrected ensemble for both pollutants.


Air quality modelling Additive bias correction Multiplicative bias correction Spatial bias correction 



The authors acknowledge the Portuguese Environmental Protection Agency for the observational dataset support. Thanks are extended to the Portuguese ‘Ministério da Ciência, da Tecnologia e do Ensino Superior’ for the financing of ENSEMBLAIR (POCI/AMB/66707/2006) project, for the PhD grant of V. Martins (SFRH/BD/39799/2007) and of Isabel Ribeiro (SFRH/BD/60370/2009) and the post doc grant of J. Ferreira (SFRH/BPD/40620/2007). COST ES0602 is also acknowledged. In addition, this work was also supported by the German Academic Exchange Service Program and the CRUP—Accoes Integradas Luso-Alemãs.


  1. 1.
    Ziehmann, C. (2000). Comparison of single-model EPS with a multimodel ensemble consisting of a few operational models. Tellus A, 52(3), 280–299.CrossRefGoogle Scholar
  2. 2.
    Wilczak, J., McKeen, S. A., Djalalova, I., et al. (2006). Bias-corrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004. Journal of Geophysical Research, 111, D23S28. doi: 10.1029/2006JD007598.CrossRefGoogle Scholar
  3. 3.
    McKeen, S., et al. (2005). Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysical Research, 110(D21).Google Scholar
  4. 4.
    Vautard, R., Builtjes, P., Thunis, P., Cuvelier, K., Bedogni, M., Bessagnet, B., et al. (2007). Evaluation and intercomparison of ozone and PM10 simulations by several chemistry-transport models over 4 European cities within the City-Delta project. Atmospheric Environment, 41, 173–188.CrossRefGoogle Scholar
  5. 5.
    van Loon, M., Vautard, R., Schaap, M., Bergström, R., Bessagnet, B., Brandt, J., et al. (2007). Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmospheric Environment, 41(10), 2083–2097.CrossRefGoogle Scholar
  6. 6.
    Pagowski, M., Grell, G. A., Devenyi, D., Peckham, S., McKeen, S. A., Gong, W., et al. (2006). Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts. Atmospheric Environment, 40, 3240–3250.CrossRefGoogle Scholar
  7. 7.
    Delle Monache, L., Deng, X., Zhou, Y., & Stull, R. (2006a). Ozone ensemble forecasts: 1. A new ensemble design. Journal of Geophysical Research, 111, D05307. doi: 10.1029/2005JD006310.CrossRefGoogle Scholar
  8. 8.
    Delle Monache, L., Nipen, T., Deng, X., Zhou, Y., & Stull, R. (2006b). Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. Journal of Geophysical Research, 111, D05308. doi: 10.1029/2005JD006311.CrossRefGoogle Scholar
  9. 9.
    Djalalova, I., Wilczak, J., McKeen, S., Grell, G., Peckhama, S., Pagowski, M., et al. (2010). Ensemble and bias-correction techniques for air quality model forecasts of surface O3 and PM2.5 during the TEXAQS-II experiment of 2006. Atmospheric Environment, 44, 455–467.CrossRefGoogle Scholar
  10. 10.
    Galmarini, S., Bianconi, R., Bellasio, R., & Graziani, G. (2001). Forecasting consequences of accidental releases from ensemble dispersion modelling. Journal of Environmental Radioactivity, 57, 203–219.CrossRefGoogle Scholar
  11. 11.
    Delle Monache, L., & Stull, R. (2003). An ensemble air quality forecast over Western Europe during an ozone forecast. Atmospheric Environment, 37, 3469–3474.CrossRefGoogle Scholar
  12. 12.
    Galmarini, S., et al. (2004). Ensemble dispersion forecasting, part I: Concept, approach and indicators. Atmospheric Environment, 38(28), 4607–4617.CrossRefGoogle Scholar
  13. 13.
    Galmarini, S., Bianconi, R., Addis, R., Andronopoulos, S., Astrup, P., Bartzis, J. C., et al. (2004). Ensemble dispersion forecasting, Part II: application and evaluation. Atmospheric Environment, 38(28), 4619–4632.CrossRefGoogle Scholar
  14. 14.
    Mallet, V., & Sportisse, B. (2006). Ensemble-based air quality forecasts: A multimodel approach applied to ozone. Journal of Geophysical Research, 111, D18302. doi: 10.1029/2005JD006675.CrossRefGoogle Scholar
  15. 15.
    Ciaramella, A., Giunta, G., Riccio, A. & Galmarini, S. (2009). Independent model selection for ensemble dispersion forecasting. Studies in computational intelligence, Vol. 245 (pp. 213–231). Berlin/Heidelberg: Springer.Google Scholar
  16. 16.
    Potempski, S., & Galmarini, S. (2009). Est modus in rebus: Analytical properties of multi-model ensembles. Atmospheric Chemical Physics, 9, 9471–9489.CrossRefGoogle Scholar
  17. 17.
    Delle Monache, L., Wilczak, J., McKeen, S., Grell, G., Pagowski, M., Peckham, S., et al. (2008). A Kalman-filter bias correction of ozone deterministic, ensemble-averaged, and probabilistic forecasts. Tellus B, 60, 238–249.CrossRefGoogle Scholar
  18. 18.
    Dee, D. (2005). Bias and data assimilation. Quarterly Journal of the Royal Meteorological Society, 131, 3323–3343.CrossRefGoogle Scholar
  19. 19.
    ENVIRON (2008) User’s guide to the Comprehensive Air Quality model with extensions (CAMx) version 4.50 (May, 2008).
  20. 20.
    Schmidt, H., Derognat, C., Vautard, R., & Beekmann, M. (2001). A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmospheric Environment, 35, 2449–2461.CrossRefGoogle Scholar
  21. 21.
    Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., et al. (2004). Aerosol modelling with CHIMERE—Preliminary evaluation at the continental scale. Atmospheric Environment, 38, 2803–2817.CrossRefGoogle Scholar
  22. 22.
    Strunk, A., Ebel, A., Elbern, H., Friese, E., Goris, N. & Nieradzik, L. P. (2010). Four-dimensional variational assimilation of atmospheric chemical data—Application to regional modelling of air quality. In: Lecture notes in computer science (LNCS), Vol. 5910 (pp. 222–229). Berlin: Springer.Google Scholar
  23. 23.
    Elbern, H., Strunk, A., Schmidt, H., & Talagrand, O. (2007). Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmospheric Chemistry Physics, 7, 3749–3769.CrossRefGoogle Scholar
  24. 24.
    Schaap, M., Timmermans, R., Sauter, F., Roemer, M., Velders, G., Boersen, G., et al. (2008). The LOTOS-EUROS model: description, validation and latest developments. International Journal of Environment and Pollution, 32(2), 270–290.CrossRefGoogle Scholar
  25. 25.
    Hurley, P., Physick, W., & Luhar, A. (2005). TAPM—A practical approach to prognostic meteorological and air pollution modelling’. Environmental Modelling & Software, 20, 737–752.CrossRefGoogle Scholar
  26. 26.
    Dudhia, J. (1993). A nonhydrostatic version of the PennState/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Monthly Weather Review, 121, 1493–1513.CrossRefGoogle Scholar
  27. 27.
    Monteiro, A., Borrego, C., Miranda, A. I., Góis, V., Torres, P. & Perez, A.T. (2007). Can air quality modelling improve emission inventories? In: Proceedings of the 6th International Conference on Urban Air Quality, 26–30 March, Limassol, Cyprus, pp. 13–14.Google Scholar
  28. 28.
    Tilmes, S., Brandt, J., Flatoy, F., Bergrstrom, R., Flemming, J., Langner, J., et al. (2002). Comparison of five Eulerian air pollution forecasting systems for the summer of 1999 using the German ozone monitoring data. Journal of Atmospheric Chemistry, 42, 91–121.CrossRefGoogle Scholar
  29. 29.
    Tchepel, O., Ferreira, J. & Borrego, C. (2009). Analysis of long-range transport of aerosols for Portugal using a 3D Chemical Transport Model and OMI measurements. Atmospheric Science Conference, ESA, Barcelona, Spain, 7–11 September 2009 (poster presentation).Google Scholar
  30. 30.
    Borrego, C., Valente, J., Carvalho, A., Sá, E., Lopes, M., & Miranda, A. I. (2010). Contribution of residential wood combustion to the PM10 levels in the atmosphere. Atmospheric Environment, 44, 642–651.CrossRefGoogle Scholar
  31. 31.
    Stull, R. B. (1988). An introduction to boundary-layer meteorology. Dordrecht: Kluwer.Google Scholar
  32. 32.
    Tchepel, O., & Borrego, C. (2010). Frequency analysis of air quality time series for traffic related pollutants. Journal of Environmental Monitoring, 12, 544–550. doi: 10.1039/b913797a.CrossRefGoogle Scholar
  33. 33.
    Talagrand, O., Vautard, R. & Strauss, B. (1998). Evaluation of probabilistic prediction systems. Proceedings of the Seminar on Predictability, Reading, UK, ECMWF, pp. 1–26.Google Scholar
  34. 34.
    Hamill, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review, 129, 550–560.CrossRefGoogle Scholar
  35. 35.
    Borrego, C., Monteiro, A., Pay, M. T., Ribeiro, I., Miranda, A. I., Basart, S., et al. (2011). How bias-correction can improve air quality forecast over Portugal. Atmospheric Environment, 45(37), 6629–6641.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Monteiro
    • 1
    Email author
  • I. Ribeiro
    • 1
  • O. Tchepel
    • 1
  • E. Sá
    • 1
  • J. Ferreira
    • 1
  • A. Carvalho
    • 1
  • V. Martins
    • 1
  • A. Strunk
    • 2
  • S. Galmarini
    • 3
  • H. Elbern
    • 2
  • M. Schaap
    • 4
  • P. Builtjes
    • 4
  • A. I. Miranda
    • 1
  • C. Borrego
    • 1
  1. 1.CESAM & Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Rhenish Institute for Environmental ResearchUniversity of CologneCologneGermany
  3. 3.European Commission—DG Joint Research CentreInstitute for Environment and SustainabilityIspraItaly
  4. 4.TNO Built Environment and GeosciencesUtrechtThe Netherlands

Personalised recommendations