Advertisement

Environmental Modeling & Assessment

, Volume 17, Issue 6, pp 589–611 | Cite as

Implementing In-Stream Nutrient Processes in Large-Scale Landscape Modeling for the Impact Assessment on Water Quality

  • Cornelia Hesse
  • Valentina Krysanova
  • Anja Voß
Article

Abstract

For a long time, watershed models focused on the transport of chemicals from the terrestrial part of the watershed to the surface water bodies by leaching and erosion. After the substances had reached the surface water, they were routed through the channel network often without any further transformation. Today, there is a need to extend watershed models with in-stream processes to bring them closer to natural conditions and to enhance their usability as support tools for water management and water quality policies. This paper presents experience with implementing in-stream processes in a ecohydrological dynamic watershed model and its application on the large scale in the Saale River basin in Germany. Results demonstrate that new implemented water quality parameters like chlorophyll a concentrations or oxygen amount in the reach can be reproduced quite well, although the model results, compared with results achieved without taking into account algal and transformation processes in the river, show obvious improvement only for some of the examined nutrients. Finally, some climate and water management scenarios expected to impact in-stream processes in the Saale basin were run. Their results illustrate the relative importance of physical boundary conditions on the amount and concentration of the phytoplankton, which leads to the conclusion that measures to improve water quality should not only take nutrient inputs into account but also climate influences and river morphology.

Keywords

Water quality modeling In-stream processes Nutrients Dissolved oxygen Chlorophyll a Impact assessment SWIM 

References

  1. 1.
    Arnold, J. G., & Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19, 563–572.CrossRefGoogle Scholar
  2. 2.
    Arnold, J. G., Williams, J. R., Srinivasan, R., King, K. W., & Griggs, R. H. (1994). SWAT: Soil and Water Assessment Tool. Temple: USDA, Agriculture Research Service, Grassland, Soil and Water Research Laboratory.Google Scholar
  3. 3.
    Behrendt, H., Kornmilch, M., Opitz, D., Schmoll, O., & Scholz, G. (2001). Flussgebietsdifferenzierte Nährstoffeinträge im Einzugsgebiet der Saale. In M. Rode, K. Henle, & A. Schellenberger (Eds.), Erhalt und Regenerierung der Flußlandschaft Saale (pp. 91–108). Halle: Deutsche Akademie der Naturforscher Leopoldina.Google Scholar
  4. 4.
    BfG (Bundesanstalt für Gewässerkunde). (1996). Molekularbiologische Grundlagen und limnologische Bedeutung der Lichthemmung (Photoinhibition) der Photosynthese in Fließgewässern. BfG-Mitteilungen Nr. 13. Koblenz: BfG.Google Scholar
  5. 5.
    Brown, L. C., & Barnwell, T. O. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. Athens: USEPA. EPA/600/3-87/007.Google Scholar
  6. 6.
    Debele, R., Srinivasan, R., & Parlange, J.-Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling and Assessment, 13(1), 135–153.CrossRefGoogle Scholar
  7. 7.
    EC (European Commission). (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. (EU Water Framework Directive, WFD) (p. L 327). Brussels: Official Journal of the European Communities.Google Scholar
  8. 8.
    Ennet, P., Pachel, K., Viies, V., Jürimägi, L., & Elken, R. (2008). Estimating water quality in river basins using linked models and databases. Estonian Journal of Ecology, 57(2), 83–99.CrossRefGoogle Scholar
  9. 9.
    Everbecq, E., Gosselain, V., Viroux, L., & Descy, J.-P. (2001). POTAMON: a dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Research, 35(4), 901–912.CrossRefGoogle Scholar
  10. 10.
    FGG-Elbe (2004a). Bericht über die Umsetzung der Anhänge II, III und IV der Richtlinie 2000/60/EG im Koordinierungsraum Saale (B-Bericht). Vorlage zur Elbe-Ministerkonferenz am 9. Dezember 2004.Google Scholar
  11. 11.
    FGG-Elbe (2004b). Bericht über die Umsetzung der Anhänge II, III und IV der Richtlinie 2000/60/EG im Koordinierungsraum Saale (B-Bericht). Appendix 1: Tables 1a, 1b, and 2.Google Scholar
  12. 12.
    Garnier, J., Billen, G., & Coste, M. (1995). Seasonal succession of diatoms and Chlorophyceae in the drainage network of the seine river: observations and modeling. Limnology and Oceanography, 40(4), 750–765.CrossRefGoogle Scholar
  13. 13.
    Gassmann, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250.Google Scholar
  14. 14.
    Gerstengarbe, F.-W., & Werner, P. C. (2005). Simulationsergebnisse des regionalen Klimamodells STAR. In F. Wechsung, A. Becker, & P. Gräfe (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet (pp. 110–118). Berlin: Weißenseeverlag.Google Scholar
  15. 15.
    Gosselain, V., Descy, J.-P., Viroux, L., Joaquim-Justo, C., Hammer, A., Métens, A., et al. (1998). Grazing by large river zooplankton: a key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia, 369(370), 199–216.CrossRefGoogle Scholar
  16. 16.
    Hattermann, F. F., Krysanova, V., Habeck, A., & Bronstert, A. (2006). Integrating wetlands and riparian zones in river basin modelling. Ecological Modelling, 199(4), 379–392.CrossRefGoogle Scholar
  17. 17.
    Hesse, C., Krysanova, V., Päzolt, J., & Hattermann, F. F. (2008). Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, 218, 135–148.CrossRefGoogle Scholar
  18. 18.
    Hesser, F. B., Franko, U., & Rode, M. (2010). Spatially distributed lateral nitrate transport at the catchment scale. Journal of Environmental Quality, 39, 193–203.CrossRefGoogle Scholar
  19. 19.
    Holst, H., Zimmermann-Timm, H., & Kausch, H. (2002). Longitudinal and transverse distribution of plankton rotifers in the potamal of the River Elbe (Germany) during late summer. International Review of Hydrobiology, 87(2–3), 267–280.CrossRefGoogle Scholar
  20. 20.
    Horn, A. L., Rueda, F. J., Hörmann, G., & Fohrer, N. (2004). Implementing river water quality modelling issues in mesoscale watershed models for water policy demands—an overview on current concepts, deficits, and future tasks. Physics and Chemistry of the Earth, 29, 725–737.CrossRefGoogle Scholar
  21. 21.
    Jacob, D., & Bülow, K. (2005). Regionale Klimasimulationen zur Untersuchung der Niederschlagsverhältnisse in heutigen und zukünftigen Klimaten. In F. Wechsung, A. Becker, & P. Gräfe (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet (pp. 89–95). Berlin: Weißenseeverlag.Google Scholar
  22. 22.
    Ji, Z.-G. (2008). Hydrodynamics and water quality: modeling rivers, lakes and estuaries. Hoboken: Wiley-Interscience.Google Scholar
  23. 23.
    Krysanova, V., Meiner, A., Roosaare, J., & Vasilyev, A. (1989). Simulation modelling of the coastal waters pollution from agricultural watersheds. Ecological Modelling, 49, 7–29.CrossRefGoogle Scholar
  24. 24.
    Krysanova, V., Wechsung, F., Arnold, J., Srinivasan, R., & Williams, J. (2000). SWIM (Soil and Water Integrated Model): user manual. Potsdam: PIK. Report No. 69.Google Scholar
  25. 25.
    Legates, D. R., & McCabe, G. J. (1999). Evaluation the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.CrossRefGoogle Scholar
  26. 26.
    Lindenschmidt, K.-E. (2005). River water quality modelling for river basin and water resources management with a focus on the Saale River, Germany. Habilitation thesis, Brandenburg University of Technology, Cottbus.Google Scholar
  27. 27.
    LUFA (Landwirtschaftliche Untersuchungs- und Forschungsanstalt des Landes Sachsen-Anhalt) (1999). Grundlagen der Düngebedarfsermittlung für eine gute fachliche Praxis beim Düngen. Available from: http://www.sachsen-anhalt.de/index.php?id=38309.
  28. 28.
    McElroy, A. D., Chiu, S. Y., Nebgen, J. W., Aleti, A., & Bennett, F. W. (1976). Loading Functions for assessment of water pollution from nonpoint sources. EPA 600/2-76-151. Springfield: National Technical Information Service.Google Scholar
  29. 29.
    Migliaccio, K. W., Chaubey, I., & Haggard, B. E. (2007). Evaluation of landscape and instream modeling to predict watershed nutrient yields. Environmental Modelling & Software, 22, 987–999.CrossRefGoogle Scholar
  30. 30.
    Mischke, U., Behrendt, H., Köhler, J., & Opitz, D. (2005). Überarbeiteter Endbericht zum LAWA-Vorhaben: Entwicklung eines Bewertungsverfahrens für Fließgewässer mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie. Berlin: Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB).Google Scholar
  31. 31.
    Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.Google Scholar
  32. 32.
    Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I: a discussion of principles. Journal of Hydrology, 10(3), 282–290.CrossRefGoogle Scholar
  33. 33.
    Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and Water Assessment Tool theoretical documentation: version 2000. Report TR-191. Temple: TWRI.Google Scholar
  34. 34.
    Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and Water Assessment Tool user’s manual: version 2000. Report TR-192. Temple: TWRI.Google Scholar
  35. 35.
    Nixdorf, B., Mischke, U., & Behrendt, H. (2002). Phytoplankton/Potamoplankton—wie geeignet ist dieser Merkmalskomplex für die ökologische Bewertung von Flüssen? In R. Deneke & B. Nixdorf (Eds.), Implementierung der EU-Wasserrahmenrichtlinie in Deutschland: Ausgewählte Bewertungsmethoden und Defizite. BTUC-AR 5/2002 (pp. 39–52). Cottbus: Eigenverlag der BTU Cottbus.Google Scholar
  36. 36.
    Parajuli, P. B., Nelson, N. O., Frees, L. D., & Mankin, K. R. (2009). Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas. Hydrological Processes, 23, 748–763.CrossRefGoogle Scholar
  37. 37.
    Refsgaard, J. C., Thorsen, M., Jensen, J. B., Kleeschulte, S., & Hansen, S. (1999). Large scale modelling of groundwater contamination from nitrate leaching. Journal of Hydrology, 221(3–4), 117–140.CrossRefGoogle Scholar
  38. 38.
    Reimann, G., & Seiert, J. (2001). Das Einzugsgebiet der Saale vor dem Hintergrund der geplanten Wasserrahmenrichtlinie der EU. In M. Rode, K. Henle, & A. Schellenberger (Eds.), Erhalt und Regenerierung der Flußlandschaft Saale (pp. 11–20). Halle: Deutsche Akademie der Naturforscher Leopoldina.Google Scholar
  39. 39.
    Reimer, E., Soboudi, S., Mikusky, E., & Langer, I. (2005). Klimaprognose der Temperatur, der potenziellen Verdunstung und des Niederschlages mit NEURO-FUZZY-Modellen. In F. Wechsung, A. Becker, & P. Gräfe (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet (pp. 96–109). Berlin: Weißenseeverlag.Google Scholar
  40. 40.
    Rode, M., Thiel, E., Franko, U., Wenk, G., & Hesser, F. (2009). Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in Central Germany. Science of the Total Environment, 407, 3459–3472.CrossRefGoogle Scholar
  41. 41.
    Scharfe, M., Callies, U., Blöcker, G., Petersen, W., & Schroeder, F. (2009). A simple Lagrangian model to simulate temporal variability of algae in the Elbe River. Ecological Modelling, 220, 2173–2186.CrossRefGoogle Scholar
  42. 42.
    Scheffer, F., & Schachtschabel, P. (2002). Lehrbuch der Bodenkunde. Heidelberg: Spektrum Akademischer.Google Scholar
  43. 43.
    Schröder, A., & Matthies, M. (2002). Ammonium in Fließgewässern des Saale-Einzugsgebietes: Vergleich von Messwerten und Modellrechnungen in GREAT-ER. UWSF–Z Umweltchem Ökotox, 14(1), 37–44.CrossRefGoogle Scholar
  44. 44.
    Schwoerbel, J. (1999). Einführung in die Limnologie. Stuttgart: Gustav Fischer.Google Scholar
  45. 45.
    Singh, J., Knapp, H. V., & Demissie, M. (2004). Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. Illinois State Water Survey contract report 2004-8. Available from: http://www.isws.illinois.edu/pubdoc/CR/ISWSCR2004-08.pdf.
  46. 46.
    Stefan, H. G., & Preud’homme, R. G. (1993). Stream temperature estimation from air temperature. Water Resources Bulletin, 29(1), 27–45.CrossRefGoogle Scholar
  47. 47.
    Theile, K. (2001). Gewässergüte der Saale–Vergangenheits- und Zukunftsaspekte. In M. Rode, K. Henle, & A. Schellenberger (Eds.), Erhalt und Regenerierung der Flußlandschaft Saale (pp. 117–129). Halle: Deutsche Akademie der Naturforscher Leopoldina.Google Scholar
  48. 48.
    Thorsen, M., Feyen, J., & Styczen, M. (1996). Agrochemical modelling. In M. B. Abbott & J. C. Refsgaard (Eds.), Distributed hydrological modelling (pp. 121–141). Dordrecht: Kluwer Academic.Google Scholar
  49. 49.
    TLL (Thüringer Landesanstalt für Landwirtschaft) (2007). Düngung in Thüringen 2007 nach “Guter fachlicher Praxis”. Schriftenreihe Landwirtschaft und Landschaftspflege in Thüringen, Heft 7/2007, available from: http://www.tll.de/ainfo/pdf/dung0108.pdf.
  50. 50.
    TMLNU (Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt) (2009). Gemeinsam KLIMAbewusst handeln: Thüringer Klima- und Anpassungsprogramm. Available from: http://www.thueringen.de/de/publikationen/pic/pubdownload1016.pdf.
  51. 51.
    van Griensven, A. (2002). Developments towards integrated water quality modelling for river basins. Ph.D. thesis, Vrije Universiteit, Brussel.Google Scholar
  52. 52.
    van Griensven, A., & Bauwens, W. (2005). Application and evaluation of ESWAT on the Dender basin and the Wister lake basin. Hydrological Processes, 19(3), 827–838.CrossRefGoogle Scholar
  53. 53.
    Viroux, L. (1997). Zooplankton development in two large lowland rivers, the Moselle (France) and the Meuse (Belgium), in 1993. Journal of Plankton Research, 19(11), 1743–1762.CrossRefGoogle Scholar
  54. 54.
    Voß, A. (2007). Untersuchung und Modellierung der Stickstoff- und Phosphorumsatz- und Transportprozesse in mesoskaligen Einzugsgebieten des Tieflandes am Beispiel von Nuthe, Hammerfließ und Stepenitz. Ph.D. thesis, Potsdam University, Potsdam.Google Scholar
  55. 55.
    Wagenschein, D., & Rode, M. (2008). Modelling the impact of river morphology on nitrogen retention—a case study of the Weisse Elster River (Germany). Ecological Modelling, 211, 224–232.CrossRefGoogle Scholar
  56. 56.
    Wechsung, F., Becker, A., & Gräfe, P. (Eds.). (2005). Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet: Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Band 6. Berlin: Weißenseeverlag.Google Scholar
  57. 57.
    Werner, A. (1997). Landwirtschaftlich genutzte Böden als Quellen und Senken bei geochemischen Prozessen. In J. Matschullat, H. J. Tobschall, & H.-J. Voigt (Eds.), Geochemie und Umwelt: Relevante Prozesse in Atmo-, Pedo- und Hydrosphäre. Berlin: Springer.Google Scholar
  58. 58.
    Werner, W., & Wodsack, H. P. (1994). Stickstoff- und Phosphoreintrag in die Fließgewässer Deutschlands unter besonderer Berücksichtigung des Eintragsgeschehens im Lockersteinbereich der ehemaligen DDR. Agrarspectrum 22. Frankfurt: DLG.Google Scholar
  59. 59.
    Williams, J. R., & Hann, R. W. (1978). Optimal operation of large agricultural watersheds with water quality constraints. Technical report no. 96, Texas Water Resources Institute.Google Scholar
  60. 60.
    Ziemann, H. (2001). Auswirkungen der Abwasserlastsenkung durch den Neubau der Kläranlage Arnstadt auf die Gewässergüte der Gera (Thüringen). KA-Wasserwirtschaft, Abwasser, Abfall, 48(4), 520–526.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cornelia Hesse
    • 1
  • Valentina Krysanova
    • 1
  • Anja Voß
    • 2
  1. 1.Potsdam-Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.Center for Environmental Systems Research (CESR)University of KasselKasselGermany

Personalised recommendations