Environmental Modeling & Assessment

, Volume 17, Issue 3, pp 241–254

Assessment of Spatiotemporal Varying Relationships Between Rainfall, Land Cover and Surface Water Area Using Geographically Weighted Regression

  • Stuart Brown
  • Vincent L. Versace
  • Laurie Laurenson
  • Daniel Ierodiaconou
  • Jonathon Fawcett
  • Scott Salzman
Article
  • 474 Downloads

Abstract

Traditional regression techniques such as ordinary least squares (OLS) are often unable to accurately model spatially varying data and may ignore or hide local variations in model coefficients. A relatively new technique, geographically weighted regression (GWR) has been shown to greatly improve model performance compared to OLS in terms of higher R2 and lower corrected Akaike information criterion (AICC). GWR models have the potential to improve reliabilities of the identified relationships by reducing spatial autocorrelations and by accounting for local variations and spatial non-stationarity between dependent and independent variables. In this study, GWR was used to examine the relationship between land cover, rainfall and surface water habitat in 149 sub-catchments in a predominately agricultural region covering 2.6 million ha in southeast Australia. The application of the GWR models revealed that the relationships between land cover, rainfall and surface water habitat display significant spatial non-stationarity. GWR showed improvements over analogous OLS models in terms of higher R2 and lower AICC. The increased explanatory power of GWR was confirmed by the results of an approximate likelihood ratio test, which showed statistically significant improvements over analogous OLS models. The models suggest that the amount of surface water area in the landscape is related to anthropogenic drainage practices enhancing runoff to facilitate intensive agriculture and increased plantation forestry. However, with some key variables not present in our analysis, the strength of this relationship could not be qualified. GWR techniques have the potential to serve as a useful tool for environmental research and management across a broad range of scales for the investigation of spatially varying relationships.

Keywords

Geographically weighted regression Land use Climate change Rainfall Water resources 

References

  1. 1.
    Anderson, H. (2005). Glenelg Hopkins Salinity Plan: 2005–2008. Hamilton: Glenelg Hopkins Catchment Management Authority.Google Scholar
  2. 2.
    Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38, 5–22.CrossRefGoogle Scholar
  3. 3.
    Attum, O., Lee, Y. M., Roe, J. H., & Kingsbury, B. A. (2007). Upland–wetland linkages: Relationship of upland and wetland characteristics with watersnake abundance. Zoology, 271, 134–139.CrossRefGoogle Scholar
  4. 4.
    Benyon, R. G., Theiveyanathan, S., & Doody, T. M. (2006). Impacts of tree plantations on groundwater in south-eastern Australia. Australian Journal of Botany, 54(2), 181–192. doi:10.1071/BT05046.CrossRefGoogle Scholar
  5. 5.
    Beyer, H. L. (2009). Geospatial Modelling Environment (0.3.3 Beta). http://www.spatialecology.com/gme. Accessed 4 May 2010.
  6. 6.
    BoM (2010) Australian climate averages—rainfall variability (climatology 1961–1990). Bureau of Meteorology. http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall-variability/index.jsp. Accessed 23 June 2010.
  7. 7.
    Boulton, A. J., & Brock, M. A. (1999). Australian freshwater ecology: Processes and management. Glen Osmond: Gleneagles.Google Scholar
  8. 8.
    Brinson, M. M., & Malvarez, A. I. (2002). Temperate freshwater wetlands: Types, status, and threats. Environmental Conservation, 29(2), 115–133. doi:10.1017/s0376892902000085.CrossRefGoogle Scholar
  9. 9.
    Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1–4), 28–61.CrossRefGoogle Scholar
  10. 10.
    Cahill, M., & Mulligan, G. (2007). Using geographically weighted regression to explore local crime patterns. Social Science Computer Review, 25(2), 174–193.CrossRefGoogle Scholar
  11. 11.
    Canepuccia, A. D., Isacch, J. P., Gagliardini, D. A., Escalante, A. H., & Iribarne, O. O. (2007). Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds, 30, 541–553.CrossRefGoogle Scholar
  12. 12.
    Corrick, A. (1992). An assessment of Victoria’s wetlands. Melbourne: Department of Conservation and Environment.Google Scholar
  13. 13.
    Davies, B., Biggs, J., Williams, P., Whitfield, M., Nicolet, P., Sear, D., et al. (2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agriculture, Ecosystems and Environment, 125, 1–8.CrossRefGoogle Scholar
  14. 14.
    Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233.CrossRefGoogle Scholar
  15. 15.
    Dirnböck, T., Hobbs, R., Lambeck, R., & Caccetta, P. (2002). Vegetation distribution in relation to topographically driven processes in southwestern Australia. Applied Vegetation Science, 5(1), 147–158.CrossRefGoogle Scholar
  16. 16.
    Dixon, P. R. (2000). Environmental monitoring in the Glenelg-Hopkins region with reference to salinity in wetlands and remnant vegetation sites. Melbourne: Department of Natural Resources and Environment.Google Scholar
  17. 17.
    DSE (2008). Climate change in the Glenelg Hopkins region. Accessed from http://nla.gov.au/nla.cat-vn4598763. Melbourne: Department of Sustainability and Environment.
  18. 18.
    Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Leveque, C., et al. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182.CrossRefGoogle Scholar
  19. 19.
    Finlayson, C. M., Davidson, N. C., Spiers, A. G., & Stevenson, N. J. (1999). Global wetland inventory—current status and future priorities. Marine and Freshwater Research, 50(8), 717–727.CrossRefGoogle Scholar
  20. 20.
    Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. Chichester: Wiley.Google Scholar
  21. 21.
    GHCMA. (2006). Glenelg Hopkins regional wetlands status report. Hamilton: Glenelg Hopkins Catchment Management Authority.Google Scholar
  22. 22.
    Gillanders, S. N., Coops, N. C., Wulder, M. A., Gergel, S. E., & Nelson, T. (2008). Multitemporal remote sensing of landscape dynamics and pattern change: Describing natural and anthropogenic trends. Progress in Physical Geography, 32(5), 503–528.CrossRefGoogle Scholar
  23. 23.
    Hallegatte, S. (2009). Strategies to adapt to an uncertain climate change. Global Environmental Change, 19(2), 240–247.CrossRefGoogle Scholar
  24. 24.
    Ierodiaconou, D., Laurenson, L., Leblanc, M., Stagnitti, F., Duff, G., Salzmann, S., et al. (2005). The consequences of land use change on nutrient exports: A regional scale assessment in south-west Victoria, Australia. Journal of Environmental Management, 74, 305–316.CrossRefGoogle Scholar
  25. 25.
    IPCC. (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  26. 26.
    Jensen, A. E. (1999). Wetland rehabilitation in Australasia. In W. Streever (Ed.), An international perspective on wetland rehabilitation. Dordrecht: Kluwer.Google Scholar
  27. 27.
    Jones, R. N., & Durack, P. J. (2005). Estimating the impacts of climate change on Victoria’s runoff using a hydrological sensitivity model. Melbourne: Commonwealth Scientific and Industrial Research Organisation.Google Scholar
  28. 28.
    Kobza, R. M., Trexler, J. C., Loftus, W. F., & Perry, S. A. (2004). Community structure of fishes inhabiting aquatic refuges in a threatened Karst wetland and its implications for ecosystem management. Biological Conservation, 116, 153–165.CrossRefGoogle Scholar
  29. 29.
    Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology, 48, 1161–1172.CrossRefGoogle Scholar
  30. 30.
    Lazarus, B. E., Schaberg, P. G., Hawley, G. J., & DeHayes, D. H. (2006). Landscape-scale spatial patterns of winter injury to red spruce foliage in a year of heavy region-wide injury. Canadian Journal of Forest Research, 36(1), 142–152.CrossRefGoogle Scholar
  31. 31.
    Li, Z., Wz, L., Xc, Z., & Fl, Z. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1–2), 35–42.CrossRefGoogle Scholar
  32. 32.
    Magoulick, D. D., & Kobza, R. M. (2003). The role of refugia for fishes during drought: A review and synthesis. Freshwater Biology, 48, 1186–1198.CrossRefGoogle Scholar
  33. 33.
    Matthews, W. J., & Marsh-Matthews, E. (2003). Effects of drought on fish across axes of space, time and ecological complexity. Freshwater Biology, 48, 1232–1253.CrossRefGoogle Scholar
  34. 34.
    McKernan, M. (2005). Drought. Crows Nest: Allen & Unwin.Google Scholar
  35. 35.
    Meinke, H., & Stone, R. C. (2005). Seasonal and inter-annual climate forecasting: The new tool for increasing preparedness to climate variability and change in agricultural planning and operation. In J. Salinger, M. V. K. Sivakumar, & R. P. Motha (Eds.), Increasing climate variability and change: Reducing the vulnerability of agriculture and forestry. Dordrecht: Springer.Google Scholar
  36. 36.
    Mitsch, W. J. (1995). Restoration of our lakes and rivers with wetlands—an important application of ecological engineering. Water Science and Technology, 31, 161–177.CrossRefGoogle Scholar
  37. 37.
    Moilanen, A., Leathwick, J., & Elith, J. (2008). A method for spatial freshwater conservation prioritization. Freshwater Biology, 53, 577–592.CrossRefGoogle Scholar
  38. 38.
    Nakaya, T., Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2005). Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine, 24(17), 2695–2717.CrossRefGoogle Scholar
  39. 39.
    O’Connell, M. J. (2003). Detecting, measuring and reversing changes to wetlands. Wetlands Ecology and Management, 11, 397–401.CrossRefGoogle Scholar
  40. 40.
    Peel, M. C., McMahon, T. A., & Finlayson, B. L. (2004). Continental differences in the variability of annual runoff-update and reassessment. Journal of Hydrology, 295(1–4), 185–197.CrossRefGoogle Scholar
  41. 41.
    Peel, M. C., McMahon, T. A., & Finlayson, B. L. (2010). Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resources Research, 46(9).Google Scholar
  42. 42.
    Pittock, B., Wratt, D., Basher, R., Bates, B., Finlayson, M., Gitay, H., et al. (2001). Australia and New Zealand. In J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken, & K. S. White (Eds.), Climate change 2001: Impacts, adaptation, and vulnerability. Cambridge: Cambridge University Press.Google Scholar
  43. 43.
    Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.Google Scholar
  44. 44.
    Ranatunga, K., Nation, E. R., & Barratt, D. G. (2008). Review of soil water models and their applications in Australia. Environmental Modelling and Software, 23(9), 1182–1206.CrossRefGoogle Scholar
  45. 45.
    Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth Science Reviews, 99(3–4), 125–161.CrossRefGoogle Scholar
  46. 46.
    Tu, J., & Xia, Z.-G. (2008). Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Science of the Total Environment, 407(1), 358–378.CrossRefGoogle Scholar
  47. 47.
    Turner, J., Wareing, K., Flinn, D., & Lambert, M. (2004). Forestry in the agricultural landscape: A review of the science of plantation forestry in Victoria. Melbourne: The Department of Primary Industries.Google Scholar
  48. 48.
    Van Dijk, A. I. J. M., Cheng, X., Austin, J., Gilfedder, M., & Hairsine, P. B. (2004). Predicted stream flow and salinity changes after afforestation in the Southwest Goulburn. Public CEF Client Report. Canberra: CSIRO.Google Scholar
  49. 49.
    Verhoeven, J. T. A., Arheimer, B., Yin, C., & Hefting, M. M. (2006). Regional and global concerns over wetlands and water quality. Trends in Ecology & Evolution, 21(2), 96–103.CrossRefGoogle Scholar
  50. 50.
    Versace, V. L., Ierodiaconou, D., Stagnitti, F., & Hamilton, A. J. (2008). Appraisal of random and systematic land cover transitions for regional water balance and revegetation strategies. Agriculture, Ecosystems and Environment, 123(4), 328–336.CrossRefGoogle Scholar
  51. 51.
    Versace, V. L., Ierodiaconou, D., Stagnitti, F., Hamilton, A. J., Walter, M. T., Mitchell, B., et al. (2008). Regional-scale models for relating land cover to basin surface-water quality using remotely sensed data in a GIS. Environmental Monitoring and Assessment, 142, 171–184.CrossRefGoogle Scholar
  52. 52.
    Watson, R. T., Zinyowera, M. C., Moss, R. H., & Dokken, D. J. (1997). The regional impacts of climate change: An assessment of vulnerability—summary for policymakers. IPCC special report. Cambridge: Cambridge University Press.Google Scholar
  53. 53.
    Whitehead, D., & Beadle, C. L. (2004). Physiological regulation of productivity and water use in Eucalyptus: A review. Forest Ecology and Management, 193(1–2), 113–140.CrossRefGoogle Scholar
  54. 54.
    Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P., et al. (2003). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation, 115, 329–341.CrossRefGoogle Scholar
  55. 55.
    Williams, D. L., Goward, S., & Arvidson, T. (2006). Landsat: Yesterday, today, and tomorrow. Photogrammetric Engineering and Remote Sensing, 72(10), 1171–1178.Google Scholar
  56. 56.
    Yu, D. L. (2006). Spatially varying development mechanisms in the Greater Beijing Area: A geographically weighted regression investigation. The Annals of Regional Science, 40(1), 173–190.CrossRefGoogle Scholar
  57. 57.
    Zedler, J. B., & Kercher, S. (2005). Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30, 39–74. doi:10.1146/annurev.energy.30.050504.144248.CrossRefGoogle Scholar
  58. 58.
    Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3), 701–708.CrossRefGoogle Scholar
  59. 59.
    Zhang, L., Gove, J. H., & Heath, L. S. (2005). Spatial residual analysis of six modeling techniques. Ecological Modelling, 186(2), 154–177.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stuart Brown
    • 1
  • Vincent L. Versace
    • 3
  • Laurie Laurenson
    • 1
  • Daniel Ierodiaconou
    • 1
  • Jonathon Fawcett
    • 2
  • Scott Salzman
    • 3
  1. 1.School of Life and Environmental SciencesDeakin UniversityWarrnamboolAustralia
  2. 2.Sinclair-Knight-MertzBendigoAustralia
  3. 3.School of Information SystemsDeakin UniversityWarrnamboolAustralia

Personalised recommendations