Environmental Modeling & Assessment

, Volume 16, Issue 5, pp 491–501

Influence of Meteorological Factors NO2, SO2, CO and PM10 on the Concentration of O3 in the Urban Atmosphere of Eastern Croatia

  • Vlatka Gvozdić
  • Elvira Kovač-Andrić
  • Josip Brana
Article

Abstract

Ozone, NO2, SO2, CO, PM10 and meteorological parameters were measured simultaneously during the summer–autumn season 2007 in Osijek—the eastern, flat, agricultural part of Croatia. Fourier analysis confirms the existence of variation in ozone volume fractions with periods ranging from the usual semi-daily and daily to 7 and 28 daily cycles. The relationships between O3 and other variables were modelled in three ways: principal component analysis, multiple linear regression and principal component regression. The results of the principal component analysis detected underlying relationships among ozone concentrations and meteorological variables. An extremely simple meteorological model is suitable for the prediction of ozone levels. The meteorological factors, temperature and cloudiness played a main role in the MLR model (R2 = 0.83). The application of the principal component regression approach confirmed that the original variables associated with the valid principal components were meteorological variables (R2 = 0.82).

Keywords

Ozone Meteorological factors Pollutants Multivariate statistical methods Fourier analysis 

References

  1. 1.
    Abdul-Wahab, S. A., Bouhamra, W., Ettouney, H., Sowerby, B., & Crittenden, B. D. (1996). Predicting ozone levels: a statistical model for predicting ozone levels. Environmental Science and Pollution Research, 3, 195–204.CrossRefGoogle Scholar
  2. 2.
    Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20, 1263–1271.CrossRefGoogle Scholar
  3. 3.
    Altshuler, S. L., Arcado, T. D., & Lawson, D. R. (1995). Weekday vs. weekend ambient ozone concentration: discussion and hypotheses with focus on Northern California. Journal of the Air & Waste Management Association, 45, 967–972.Google Scholar
  4. 4.
    Beaney, G., & Gough, W. A. (2002). The influence of tropospheric ozone on the air temperature of the city of Toronto, Ontario, Canada. Atmospheric Environment, 36, 2319–2325.CrossRefGoogle Scholar
  5. 5.
    Bröniman, S., & Neu, U. (1997). Weekend-weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmospheric Environment, 31(8), 1127–1135.CrossRefGoogle Scholar
  6. 6.
    Barrero, M. A., Grimalt, J. O., & Cantón, L. (2006). Prediction of daily ozone concentration maxima in the urban atmosphere. Chemometrics and Intelligent Laborary Systems, 80, 67–76.CrossRefGoogle Scholar
  7. 7.
    Butković, V., Cvitaš, T., Džepina, K., Kezele, N., & Klasinc, L. (2002). Long-term ozone data analysis. Croatica Chemica Acta, 75(4), 927–933.Google Scholar
  8. 8.
    Council Directive 2002/3EC. (2002). Relating to ozone in ambient air. Official Journal of the European Communities, L, 67, 14–30.Google Scholar
  9. 9.
    Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (2002). Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. The Science of the Total Environment, 299, 97–113.CrossRefGoogle Scholar
  10. 10.
    Felipe-Sotelo, M., Gustems, L., Hernández, I., Terrado, M., & Tauler, R. (2006). Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North–East Spain) during the period 2000–2004 using multivariate data analysis methods. Atmospheric Environment, 40, 7421–7436.CrossRefGoogle Scholar
  11. 11.
    Katsoulis, B. D. (1996). The relationship between synoptic, mesoscale and microscale meteorological parameters during poor air quality events in Athens, Greece. The Science of the Total Environment, 181, 13–24.CrossRefGoogle Scholar
  12. 12.
    Kovač-Andrić, E., Brana, J., & Gvozdić, V. (2009). Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecological Informatics, 4, 117–122.CrossRefGoogle Scholar
  13. 13.
    Lengyel, A., Héberger, K., Paksy, L., Bánhidi, O., & Rajkó, R. (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57, 889–896.CrossRefGoogle Scholar
  14. 14.
    Malec, L., & Skácel, F. (2008). Analyzing ground ozone formation regimes using a principal axis factoring method: a case study of Kladno (Czech Republic) industrial area. Atmósfera, 21(3), 249–263.Google Scholar
  15. 15.
    Marković, M. D., & Marković, D. A. (2005). The realtionship between some meteorological parameters and the tropospheric concentrations of ozone in the urban area of Belgrade. Journal of the Serbian Chemical Society, 70(12), 1487–1495.CrossRefGoogle Scholar
  16. 16.
    Olszyna, K. J., Luria, M., & Meagher, J. F. (1997). The correlation of temperature and rural ozone levels in southeastern U.S.A. Atmospheric Environment, 31, 3011–3022.CrossRefGoogle Scholar
  17. 17.
    Paden, D. B., Setzer, R. W., & Dewlin, R. B. (1995). Ozone exposure has both a priming effect on allergen-induced responses as well as an intrinsic inflammatory action in the nasal airways of perennially allergic asthmatics. American Journal of Respiratory and Critical Care Medicine, 151(5), 1336–1345.Google Scholar
  18. 18.
    Poissant, L., Bottenheim, J. W., Roussel, P., Reid, N. W., & Niki, H. (1996). Multivariate analysis of a 1992 Sontos data subset. Atmospheric Environment, 30, 2133–2144.CrossRefGoogle Scholar
  19. 19.
    Shutters, S. T., & Balling, R. C. (2006). Weekly periodicity of environmental variables in Phoenix, Arizona. Atmospheric Environment, 40, 304–310.CrossRefGoogle Scholar
  20. 20.
    Soja, G., & Soja, A. M. (1999). Ozone indices based on simple meteorological parameters: potentials and limitations of regression and neural network models. Atmospheric Environment, 33, 4299–4307.CrossRefGoogle Scholar
  21. 21.
    Statheropoulos, M., Vassiliadis, N., & Pappa, A. (1998). Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmospheric Environment, 32(6), 1087–1095.CrossRefGoogle Scholar
  22. 22.
    Tarasova, O. A., & Karpetchko, A. Y. (2003). Accounting for local meteorological effects in the ozone time-series of Lovozero (Kola Peninsula). Atmospheric Chemistry and Physics Disscusions, 3, 655–676.CrossRefGoogle Scholar
  23. 23.
    Vandeginste, B. G. M., Massart, D. L., Buydens, L. M. C., De Jong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1998). Handbook of chemometrics and qualimetrics, part B (pp. 88–160). Amsterdam: Elsevier.Google Scholar
  24. 24.
    Wilks, S. D. (2006). Statistical methods in the atmospheric sciences (2nd ed., pp. 371–508). Amsterdam: Elsevier.Google Scholar
  25. 25.
    Žabkar, J., Žabkar, A., Vladušič, D., Čemas, D., Šuc, D., & Bratko, I. (2006). Q2 Prediction of ozone concentrations. Ecological Modelling, 191, 68–82.CrossRefGoogle Scholar
  26. 26.
    Yamartino, R. J. (1984). A comparison of several “Single-Pass” estimators of the standard deviation of wind direction. Journal of Applied Meteorology and Climatology, 23, 1362–1366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vlatka Gvozdić
    • 1
  • Elvira Kovač-Andrić
    • 1
  • Josip Brana
    • 2
  1. 1.Department of ChemistryUniversity of J. J. StrossmayerOsijekCroatia
  2. 2.Department of PhysicsUniversity of J. J. StrossmayerOsijekCroatia

Personalised recommendations