Environmental Modeling & Assessment

, Volume 16, Issue 4, pp 359–367 | Cite as

CFD Investigation of Particle Deposition in a Horizontal Looped Turbulent Pipe Flow

  • Alamgir Hossain
  • Jamal Naser
  • Monzur Alam Imteaz
Article

Abstract

This paper presents comprehensive 3D numerical investigations on depositions of particles flowing through a horizontal pipe loop consisting of four bends. The multiphase mixture model available in FLUENT 6.2 was used in this study. In this numerical simulation, five different particle sizes have been used as secondary phases to calculate real multiphase effect in which inter-particle interaction has been considered. The deposition of particles along the periphery of the pipe wall was investigated as a function of particle size and fluid velocity. The simulations showed that near the upstream of the bends, maximum particle concentration occurred at the bottom of the pipe. However, downstream the bends, the maximum particle concentration occurred at an angle of 60° from the bottom. The larger particles clearly showed deposition near the bottom wall except downstream. As expected, the smaller particles showed less tendency of deposition and lesser at higher velocity. This numerical investigation showed qualitative agreement with the experiments conducted by Commonwealth Scientific and Industrial Research Organisation, Melbourne team for similar conditions.

Keywords

CFD simulation Numerical investigation Particle deposition Two-phase flow Turbulence 

List of Symbols

\( \vec{a} \)

secondary-phase particle’s acceleration

C+

concentration of particles

Cf

friction co-efficient

D

pipe diameter

Df

fluid diffusivity

Dp

particle diffusion coefficient

dp

diameter of the particles of secondary phase

\( \vec{F} \)

body force

fdrag

drag function

k

proportional constant

kD

constant

kn

eigenvalues

L

Length scale

l

particle mean free path

mT

mass transfer

n

number of phases

P

Peclet number

RD

deposition flux

Re

entrainment flux of the particles

Re*

Reynolds number based on the friction velocity

Ref

fluid Reynolds number

S

Stokes number

t0

initial time

TL

integral flow time scale

TP

particle integral time scale

U

Velocity scale

u*

the friction velocity

u*

friction velocity

v

free-flight velocity

\( {\vec{v}_{{dr,k}}} \)

drift velocity for secondary phase

Vf

pipe average fluid velocity

vf

fluctuating velocity

vg

Particle free fall velocity

vg

gravitational settling velocity of the particle

\( {\vec{v}_m} \)

mass-averaged velocity of the mixture

\( {\vec{v}_{{qp}}} \)

relative velocity

\( \left\langle {v\prime_p^2} \right\rangle \)

particle’s mean square velocity

λK

Kolmogorov length scale

ρm

mixture density

ρp

densities of the particle

αk

volume fraction of phase

ε

kinetic energy dissipation

ɸ

angle around the pipe circumference

γcross

crossing trajectories coefficient

γinert

inertial coefficient

λ

free-flight/diffusion ratio

μm

viscosity of the mixture

νf

kinematic viscosity

νf

kinematic viscosity

ρf

densities of the fluid

τp

particle relaxation time

τqp

particulate relaxation time

τs

wall shear stress

References

  1. 1.
    Abuzeid, S., Busniana, A. A., & Ahmadi, G. (1991). Wall deposition of aerosol particles in a turbulent channel flow. Journal of Aerosol Science, 22, 43–62.CrossRefGoogle Scholar
  2. 2.
    Anderson, R. J., & Russell, T. W. F. (1970). Circumferential variation of interchange in horizontal annular two-phase flow. Industrial & Engineering Chemistry Fundamentals, 9, 340.CrossRefGoogle Scholar
  3. 3.
    Anderson, R. J., & Russell, T. W. F. (1970). Film formation in two-phase annular flow. AIChE Journal, 14, 626–633.CrossRefGoogle Scholar
  4. 4.
    David, Y. H. P., Romay-Novas, F., & Liu, B. Y. H. (1987). Experimental study of particle deposition in bends of circular cross section. Aerosol Science and Technology, 7, 301–315.CrossRefGoogle Scholar
  5. 5.
    Davies, C. N. (1966). Aerosol science. London: Academic.Google Scholar
  6. 6.
  7. 7.
    Friendlander, S. K., & Johnstone, H. F. (1957). Deposition of suspended particles from turbulent gas streams. Industrial and Engineering Chemistry, 49, 1151.CrossRefGoogle Scholar
  8. 8.
    Grainger, C., Wu, J., Nguyen, B. V., Ryan, G., Jayanratne, A., & Mathes, P. (2003). Part 1: settling, re-suspension and transport. Melbourne: CRC-CFC.Google Scholar
  9. 9.
    Hossain, A. (2005). CFD investigation for turbidity spikes in drinking water distribution networks, PhD Thesis, Swinburne University of Technology, Melbourne, Australia.Google Scholar
  10. 10.
    Hossain, A., Naser, J., McManus, A. M. K., & Ryan, G. (2003). CFD investigation of particle deposition and dispersion in a horizontal pipe. Third International Conference on CFD in the Minerals and Process Industries, December 2003, CSIRO, Melbourne, AustraliaGoogle Scholar
  11. 11.
    Landahl, H. D., & Herrmann, R. G. (1949). Sampling of liquid aerosols by wires, cylinders, and slides, and the efficiency of impaction of the droplets. Journal of Colloid and Interface Science, 4, 103–136.Google Scholar
  12. 12.
    Laurinat, J. E., Hanratty, T. J., & Jepson, W. P. (1985). Film thickness distribution for gas–liquid annular flow in a horizontal pipe. Physiochemical Hydrodynamics, 6, 179–195.Google Scholar
  13. 13.
    Li, A., & Ahmadi, G. (1993). Deposition of aerosols on surfaces in a turbulent channel flow. International Journal of Engineering Science, 31, 435.CrossRefGoogle Scholar
  14. 14.
    Liu, B. Y. H., & Agarwal, J. K. (1974). Experimental observation of aerosol deposition in turbulent flows. Journal of Aerosol Science, 5, 145.CrossRefGoogle Scholar
  15. 15.
    Manninen, M., Taivassalo, V., & Kallio, S. (1996). On the mixture model for multiphase flow. VTT Publications 288. Finland: Technical Research Centre of Finland.Google Scholar
  16. 16.
    Mols, B., & Oliemans, R. V. A. (1998). A Turbulent diffusion model for particle dispersion and deposition in horizontal tube flow. International Journal of Multiphase Flow, 24(1), 55–75.CrossRefGoogle Scholar
  17. 17.
    Schiller, L., & Nuamann, Z. (1935). Zeitschrift des Vereines Deutscher Ingenieure, 77, 318.Google Scholar
  18. 18.
    Spalart, P. and Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. American Institute of Aeronautics and Astronautics.Google Scholar
  19. 19.
    Stovin, V. R., & Saul, A. J. (1998). A computational fluid dynamics particle tracking approach to efficiency prediction. Water Science and Technology, 37(1), 285–293.CrossRefGoogle Scholar
  20. 20.
    Swailes, D. C., & Reeks, M. W. (1994). Particle deposition from a turbulent flow. I. A steady-state model for high inertia particles. Physics of Fluids, 6(10), 3392.CrossRefGoogle Scholar
  21. 21.
    Ta, C. T., Beckley, J., & Eades, A. (2001). A multiphase CFD model of DAF process. Water Science and Technology, 43(8), 153–157.Google Scholar
  22. 22.
    Thomson, D. J. (2003). Dispersion of particle pairs and decay of scalar fields in isotropic turbulence. Physics of Fluids, 15(3), 801–813.CrossRefGoogle Scholar
  23. 23.
    Tsai, C. J., & Pui, D. Y. H. (1990). Numerical study of particle deposition in bends of a circular cross section laminar flow regime. Aerosol Science and Technology, 12, 813–831.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alamgir Hossain
    • 1
  • Jamal Naser
    • 1
  • Monzur Alam Imteaz
    • 1
  1. 1.Faculty of Engineering and Industrial SciencesSwinburne University of TechnologyMelbourneAustralia

Personalised recommendations