Environmental Modeling & Assessment

, Volume 16, Issue 3, pp 251–264

Comparing the Number of Ozone Exceedances in Different Seasons of the Year in Mexico City

  • Jorge Alberto Achcar
  • Douglas Ernesto Fazioni Sousa
  • Eliane R. Rodrigues
  • Guadalupe Tzintzun
Article

Abstract

Ozone air pollution is a serious problem in several cities of the world. Hence, to analyse the behaviour of this pollutant is a very important issue. One problem of interest is to study the behaviour of the inter-occurrences times between two ozone exceedances, i.e. between two days in which the pollutant’s measurement surpasses a given threshold. Another interest resides in comparing the behaviour of ozone measurements in different seasons of the year. In this paper we use some Poisson models to analyse this problem. The time interval at which the ozone measurements were taken is split into subintervals corresponding roughly to the seasons of the year. We consider three parametric forms for the mean of the Poisson model, and consequently for the mean of the inter-occurrences times. In each model, the parameters describing its mean are estimated using Bayesian inference via Markov chain Monte Carlo methods. The models are applied to the ozone measurements provided by the Mexico City monitoring network. Theoretical results suggest that an increase has occurred in the mean inter-exceedances times and this is corroborated by the observed data. Differences between the behaviour of the pollutant during different seasons of the year are also detected as well as similarities in the same season in different years. Besides estimating the mean of the Poisson models, inference for the possible presence and location of change-points indicating change of parameters of the model is also performed.

Keywords

Poisson models Multiple change-points Bayesian inference Ozone exceedances 

References

  1. 1.
    Achcar, J. A., Fernández-Bremauntz, A. A., Rodrigues, E. R., & Tzintzun, G. (2008). Estimating the number of ozone peaks in Mexico City using a non-homogeneous Poisson model. Environmetrics, 19, 469–485.CrossRefGoogle Scholar
  2. 2.
    Achcar, J. A., Ortíz-Rodríguez, G., & Rodrigues, E. R. (2009). Estimating the number of ozone peaks in Mexico City using a non-homogeneous Poisson model and a Metropolis-Hastings algorithm. International Journal of Pure and Applied Mathematics, 53, 1–20.Google Scholar
  3. 3.
    Achcar, J. A., Rodrigues, E. R., Paulino, C. D., & Soares, P. (2009). Non-homogeneous Poisson models with a change-point: An application to ozone peaks in Mexico City. Environmental and Ecological Statistics. doi:10.1007/s10651-009-01114-3.
  4. 4.
    Akaike, H. A. (1974). New look at the statistical model identification. IEEE Transaction on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
  5. 5.
    Álvarez, L. J., Fernández-Bremauntz, A. A., Rodrigues, E. R., & Tzintzun, G. (2005). Maximum a posteriori estimation of the daily ozone peaks in Mexico City. Journal of Agricultural, Biological, and Environmental Statistics, 10, 276–290.CrossRefGoogle Scholar
  6. 6.
    ARB (Air Resource Board) (2005). Review of the California ambient air quality standard for ozone. Staff Report, California Environmental Protection Agency, USA.Google Scholar
  7. 7.
    Austin, J., & Tran, H. (1999). A characterization of the weekday-weekend behavior of ambient ozone concentrations in California. In Air pollution (Vol. VII, pp. 645–661). USA: WIT Press.Google Scholar
  8. 8.
    Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., & Dominici, F. (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. Journal of the American Medical Society, 292, 2372–2378.Google Scholar
  9. 9.
    Bell, M. L., Peng, R., & Dominici, F. (2005). The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environmental Health Perspectives, 114, 532–536.CrossRefGoogle Scholar
  10. 10.
    Bell, M. L., Goldberg, R., Rogrefe, C., Kinney, P. L., Knowlton, K., Lynn, B., et al. (2007). Climate change, ambient ozone, and health in 50 US cities. Climate Change, 82, 61–76.CrossRefGoogle Scholar
  11. 11.
    Bernardo, J. M., & Smith, A. F. M. (1995). Bayesian theory. New York: Wiley.Google Scholar
  12. 12.
    Burham, K. P., & Anderson, D. A. (2002). Model selection and multivariate inference: A practical information—theoretic approach (2nd ed.). New York: Springer.Google Scholar
  13. 13.
    Davis, L. W. (2008). The effect of driving restrictions on air quality in Mexico City. Journal of Political Economy, 116, 38–81.CrossRefGoogle Scholar
  14. 14.
    EPA (US Environmental Protection Agency) (2008). National ambient air quality standards. Available at: http://www.epa.gov/air/criteria.html. Accessed March 2010.
  15. 15.
    Flaum, J. B., Rao, S. T., & Zurbenko, I. G. (1996). Moderating influence of meteorological conditions on ambient ozone concentrations. Journal of the Air & Waste Management Association, 46, 33–46.Google Scholar
  16. 16.
    Galizia, A., & Kinney, P. L. (1999). Long-term residence in areas of high ozone: Associations with respiratory health in a nationwide sample of nonsmoking young adults. Environmental Health Perspective, 107, 675–679.CrossRefGoogle Scholar
  17. 17.
    Gauderman, W. J., Avol, E., Gililand, F., Vora, H., Thomas, D., Berhane, K., et al. (2004). The effects of air pollution on lung development from 10 to 18 years of age. The New England Journal of Medicine, 351, 1057–1067.CrossRefGoogle Scholar
  18. 18.
    Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.CrossRefGoogle Scholar
  19. 19.
    Guardani, R., Nascimento, C. A. O., Guardani, M. L. G., Martins, M. H. R. B., & Romano, J. (1999). Study of atmospheric ozone formation by means of a neural network based model. Journal of the Air & Waste Management Association, 49, 316–323.Google Scholar
  20. 20.
    Guardani, R., Aguiar, J. L., Nascimento, C. A. O., Lacava, C. I. V., & Yanagi, Y. (2003). Ground-level ozone mapping in large urban areas using multivariate analysis: Application to the São Paulo Metropolitan Area. Journal of the Air & Waste Management Association, 53, 553–559.Google Scholar
  21. 21.
    Horowitz, J. (1980). Extreme values from a nonstationary stochastic process: An application to air quality analysis. Technometrics, 22, 469–482.CrossRefGoogle Scholar
  22. 22.
    Hoyos, L., Lara, P., Ortíz, E., Gonzaléz, J., & López, R. (2009). Evaluation of air pollution control policies in Mexico City using a finite Markov observation model. Revista de Matemáticas: Teoría y Aplicaciones, 16, 255–266.Google Scholar
  23. 23.
    Huerta, G., & Sansó, B. (2005). Time-varying models for extreme values. Technical Report 2005-4. Department of Applied Mathematics and Statistics, University of California, USA.Google Scholar
  24. 24.
    Itô, K., de León, S., & Lippman, M. (2005). Associations between ozone and daily mortality: A review and additional analysis. Epidemiology, 16, 446–457.CrossRefGoogle Scholar
  25. 25.
    Javits, J. S. (1980). Statistical interdependencies in the ozone national ambient air quality standard. Journal of the Air & Waste Management Association, 30, 58–59.Google Scholar
  26. 26.
    Lanfredi, M., & Macchiato, M. (1997). Searching for low dimensionality in air pollution time series. Europhysics Letters, 40, 589–594.CrossRefGoogle Scholar
  27. 27.
    Larsen, L. C., Bradley, R. A., & Honcoop, G. L. (1990). A new method of characterizing the variability of air quality-related indicators. In: Air and waste management association’s international specialty conference of tropospheric ozone and the environment, California, USA.Google Scholar
  28. 28.
    Leadbetter, M. R. (1991). On a basis for “peak over threshold” modeling. Statistics and Probability Letters, 12, 357–362.CrossRefGoogle Scholar
  29. 29.
    Lippmann, M., & Schlesinger, R. B. (2000). Toxicological bases for the setting of health-related air pollution standard. Annual Review of Public Health, 21, 309–333.CrossRefGoogle Scholar
  30. 30.
    Loomis, D. P., Borja-Arbuto, V. H., Bangdiwala, S. I., & Shy, C. M. (1996). Ozone exposure and daily mortality in Mexico City: A time series analysis. Health Effects Institute Research Report, 75, 1–46.Google Scholar
  31. 31.
    McKinley, G., Zuk, M., Höjer, M., Avalos, M., Gonzaléz, I., Iniestra, R., et al. (2005). Quantification of local and global benefits from air pollution control in Mexico City. Environmental Science & Technology, 39, 1954–1961.CrossRefGoogle Scholar
  32. 32.
    Moranda, P. B. (1975). Prediction of software reliability and its application. In: Proceedings of the annual reliability and maintainability symposium, Washington, DC. pp. 327–332.Google Scholar
  33. 33.
    NOM (2002). Modificación a la Norma Oficial Mexicana NOM-020-SSA1-1993. Diario Oficial de la Federación. 30 de Octubre de 2002.Google Scholar
  34. 34.
    O’Neill, M. R., Loomis, D., & Borja-Aburto, V. H. (2004). Ozone, area social conditions and mortality in Mexico City. Environmental Research, 94, 234–242.CrossRefGoogle Scholar
  35. 35.
    Pan, J.-N., & Chen, S.-T. (2007). Monitoring long-memory air quality data using ARFIMA model. Environmetrics, 19, 209–219.CrossRefGoogle Scholar
  36. 36.
    Pérez-Muñoz, R. H. (2006). Los Procesos de Bernoulli y Poisson en el Estudio de Casos de Incumplimiento de la Norma para Ozono (in Spanish). Undergraduate Final Report, Universidad Nacional Autónoma de México, Mexico.Google Scholar
  37. 37.
    Piegorsch, W. W., Smith, E. P., Edwards, D., & Smith, R. L. (1998). Statistical advances in environmental sciences. Statistical Sciences, 13, 186–208.CrossRefGoogle Scholar
  38. 38.
    Raftery, A. E. (1989). Are ozone exceedance rate decreasing? Comment of the paper “Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone” by R. L. Smith. Statistical Sciences, 4, 378–381.CrossRefGoogle Scholar
  39. 39.
    Roberts, E. M. (1979). Review of statistics of extreme values with applications to air quality data. Part I. Review. Journal of the Air Pollution Control Association, 29, 632–637.Google Scholar
  40. 40.
    Roberts, E. M. (1979). Review of statistics of extreme values with applications to air quality data. Part II. Applications. Journal of the Air Pollution Control Association, 29, 733–740.Google Scholar
  41. 41.
    Ross, S. M. (1996). Stochastic processes. USA: Wiley.Google Scholar
  42. 42.
    Seinfeld, J. H. (2004). Air pollution: A half century of progress. American Institute of Chemical Engineers Journal, 50, 1098–1108.Google Scholar
  43. 43.
    Smith, R. L. (1989). Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone. Statistical Sciences, 4, 367–393.CrossRefGoogle Scholar
  44. 44.
    Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the Gibbs Sampler and related Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society Series B, 55, 3–23.Google Scholar
  45. 45.
    Spiegelhalter, D. J., Thomas, A., Best, N. G., & Gilks, W. R. (1999). WinBugs: Bayesian inference using Gibbs sampling. MRC Biostatistics Unit. UK: Cambridge.Google Scholar
  46. 46.
    Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B, 64, 583–639.CrossRefGoogle Scholar
  47. 47.
    Wilson, R., Colone, S. D., Spengler, J. D., & Wilson, D. G. (1980). Health effects if fossil fuel burning: Assessment and mitigation. USA: Ballenger.Google Scholar
  48. 48.
    Zavala, M., Lei, W. F., Molina, M. J., & Molina, L. T. (2009). Modeled and observed ozone sensitivity so mobile-source emissions in Mexico City. Atmospheric Chemistry and Physics, 9, 39–55.CrossRefGoogle Scholar
  49. 49.
    Zavala, M., Herndon, S. C., Wood, E. C., Onasch, T. B., Knighton, W. B., Marr, L. C., et al. (2009). Evaluation of mobile emissions contributions to Mexico City’s emissions inventory using on road and cross-road emission measurements and ambient data. Atmospheric Chemistry and Physics, 9, 6305–6317.CrossRefGoogle Scholar
  50. 50.
    Zolghadri, A., & Henry, D. (2004). Minmax statistical models for air pollution time series. Application to ozone time series data measured in Bordeaux. Environmental Monitoring and Assessment, 98, 275–294.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jorge Alberto Achcar
    • 1
  • Douglas Ernesto Fazioni Sousa
    • 1
  • Eliane R. Rodrigues
    • 2
  • Guadalupe Tzintzun
    • 3
  1. 1.Departamento de Medicina SocialFMRP-USPRibeirão PretoBrazil
  2. 2.Instituto de Matemáticas—UNAMArea de la Investigación Científica, Circuito Exterior—Ciudad UniversitariaMéxicoMexico
  3. 3.Instituto Nacional de Ecología—SEMARNATMéxicoMéxico

Personalised recommendations