Advertisement

Environmental Modeling & Assessment

, Volume 16, Issue 3, pp 227–238 | Cite as

Integrating Land Market Feedbacks into Conservation Planning—A Mathematical Programming Approach

  • Kerstin JantkeEmail author
  • Uwe A. Schneider
Article

Abstract

Nature reserves are often designated ad hoc. Despite increasing conservation efforts, loss of biodiversity is still accelerating. Considering land scarcity and demand for alternative uses, efficiency in conservation strongly correlates with efficiency in land allocation. Systematic conservation planning can effectively prioritize conservation activities. Previous studies minimize opportunity costs for given conservation targets. However, these studies assume constant marginal costs of habitat protection. We extend this cost minimization approach by also considering a dynamic representation of marginal costs. The more land is allocated to nature reserves, the higher are opportunity costs, i.e., costs of forgone agricultural production. This increase in costs results from changes in the prices of agricultural commodities. We employ a deterministic, spatially explicit mathematical optimization model to allocate species habitats by minimizing opportunity costs for setting aside land for conservation purposes. The model is designed as a mixed integer programming problem and solved with GAMS/CPLEX. Our results show the need for integrating land market feedbacks into conservation planning. We find that ignoring land rent adjustments can lead to highly cost-ineffective solutions in reserve selection.

Keywords

Marginal costs Mathematical optimization model Mixed integer programming Set-covering problem Systematic conservation planning 

Notes

Acknowledgements

The authors thank the many volunteer fieldworkers who contributed to the species atlas records and three anonymous reviewers who gave valuable comments on earlier versions of the manuscript. This study has received financial support from the Michael Otto Foundation for Environmental Protection, and the European Commission through the FP6 projects European Non-Food Agriculture (ENFA) and Global Earth Observation – Benefit Estimation: Now, Next and Emerging (GEOBENE) and the FP7 project A European Approach to GEOSS (EuroGEOSS).

Supplementary material

10666_2010_9242_MOESM1_ESM.pdf (20 kb)
ESM 1 (PDF 19 kb)

References

  1. 1.
    Adams, V. M., Pressey, R. L., & Naidoo, R. (2010). Opportunity costs: Who really pays for conservation? Biological Conservation, 143, 439–448.CrossRefGoogle Scholar
  2. 2.
    Alig, R., Adams, D., & McCarl, B. (1998). Impacts of incorporating land exchanges between forestry and agriculture in sector models. Journal of Agricultural and Applied Economics, 30, 389–401.Google Scholar
  3. 3.
    Ando, A., Camm, J., Polasky, S., & Solow, A. (1998). Species distributions, land values, and efficient conservation. Science, 279, 2126.CrossRefGoogle Scholar
  4. 4.
    Araujo, M. B., Lobo, J. M., & Moreno, J. C. (2007). The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conservation Biology, 21, 1423–1432.CrossRefGoogle Scholar
  5. 5.
    Armsworth, P. R., Daily, G. C., Kareiva, P., & Sanchirico, J. N. (2006). Land market feedbacks can undermine biodiversity conservation. PNAS, 103, 5403–5408.CrossRefGoogle Scholar
  6. 6.
    Baillie, J. E. M., Hilton-Taylor, C., & Stuart, S. N. (2004). IUCN red list of threatened species: a global species assessment. Gland: IUCN.Google Scholar
  7. 7.
    Balmford, A., Gaston, K. J., Blyth, S., James, A., & Kapos, V. (2003). Global variation in terrestrial conservation costs, conservation benefits, and unmet conservation needs. PNAS, 100, 1046–1050.CrossRefGoogle Scholar
  8. 8.
    Balmford, A., Gaston, K. J., Rodrigues, A. S. L., & James, A. (2000). Integrating costs of conservation into international priority setting. Conservation Biology, 14, 597–605.CrossRefGoogle Scholar
  9. 9.
    Barlow, R., Grado, S., Miller, D., & Grebner, D. (2007). Opportunity costs of managing for wildlife habitat in the North Central Hills region of Mississippi. Southern Journal of Applied Forestry, 31, 39–46.Google Scholar
  10. 10.
    Bladt, J., Strange, N., Abildtrup, J., Svenning, J. C., & Skov, F. (2009). Conservation efficiency of geopolitical coordination in the EU. Journal of Nature Conservation, 17, 72–86.CrossRefGoogle Scholar
  11. 11.
    Boyd, C., Brooks, T. M., Butchart, S. H. M., Edgar, G. J., da Fonseca, G. A. B., Hawkins, F., et al. (2008). Spatial scale and the conservation of threatened species. Conservation Letters, 1, 37–43.CrossRefGoogle Scholar
  12. 12.
    Carwardine, J., Wilson, K. A., Watts, M., Etter, A., Klein, C. J., & Possingham, H. P. (2008). Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority setting. PLoS ONE, 3, e2586.CrossRefGoogle Scholar
  13. 13.
    Cullen, R., Hughey, K. F. D., Fairburn, G., & Moran, E. (2005). Economic analyses to aid nature conservation decision making. Oryx, 39, 327–334.CrossRefGoogle Scholar
  14. 14.
    Faith, D. P., Margules, C., & Walker, P. (2001). A biodiversity conservation plan for Papua New Guinea based on biodiversity trade-offs analysis. Pacific Conservation Biology, 6, 304–324.Google Scholar
  15. 15.
    Foppen, R. P. B., Chardon, J. P., & Liefveld, W. (2000). Understanding the role of sink patches in source-sink metapopulations: Reed Warbler in an agricultural landscape. Conservation Biology, 14, 1881–1892.CrossRefGoogle Scholar
  16. 16.
    Frazee, S. R., Cowling, R. M., Pressey, R. L., Turpie, J. K., & Lindenberg, N. (2003). Estimating the costs of conserving a biodiversity hotspot: a case-study of the Cape Floristic Region, South Africa. Biological Conservation, 112, 275–290.CrossRefGoogle Scholar
  17. 17.
    Gasc, J. P., Cabela, A., Crnobrnja-Isailovic, J., Dolmen, D., Grossenbacher, K., Haffner, P., et al. (1997). Atlas of amphibians and reptiles in Europe (Collection Patrimoines Naturels). Paris: Societas Europaea Herpetologica, Muséum National d’Histoire Naturelle and Service du Petrimone Naturel.Google Scholar
  18. 18.
    Gonzales, E. K., Arcese, P., Schulz, R., & Bunnell, F. L. (2003). Strategic reserve design in the central coast of British Columbia: integrating ecological and industrial goals. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere, 33, 2129–2140.CrossRefGoogle Scholar
  19. 19.
    Hagemeijer, W. J. M., & Blair, M. J. (1997). The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. London: T & A D Poyser.Google Scholar
  20. 20.
    James, A., Gaston, K. J., & Balmford, A. (2001). Can we afford to conserve biodiversity? Bioscience, 51, 43–52.CrossRefGoogle Scholar
  21. 21.
    Jantke, K., & Schneider, U. A. (2010). Multiple-species conservation planning for European wetlands with different degrees of coordination. Biological Conservation, 143, 1812–1821.CrossRefGoogle Scholar
  22. 22.
    Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243–253.CrossRefGoogle Scholar
  23. 23.
    Margules, C. R., & Sarkar, S. (2007). Systematic conservation planning. Cambridge: Cambridge University Press.Google Scholar
  24. 24.
    Marianov, V., ReVelle, C., & Snyder, S. (2008). Selecting compact habitat reserves for species with differential habitat size needs. Computers & Operations Research, 35, 475–487.CrossRefGoogle Scholar
  25. 25.
    McCarl, B. A., & Schneider, U. A. (2001). Climate change—greenhouse gas mitigation in US agriculture and forestry. Science, 294, 2481–2482.CrossRefGoogle Scholar
  26. 26.
    McDonnell, M. D., Possingham, H. P., Ball, I. R., & Cousins, E. A. (2002). Mathematical methods for spatially cohesive reserve design. Environmental Modeling and Assessment, 7, 107–114.CrossRefGoogle Scholar
  27. 27.
    Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P. J. H., Spitzenberger, F., et al. (1999). The Atlas of European Mammals. London: Academic.Google Scholar
  28. 28.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle Scholar
  29. 29.
    Naidoo, R., & Adamowicz, W. L. (2006). Modeling opportunity costs of conservation in transitional landscapes. Conservation Biology, 20, 490–500.CrossRefGoogle Scholar
  30. 30.
    Naidoo, R., Balmford, A., Ferraro, P. J., Polasky, S., Ricketts, T. H., & Rouget, M. (2006). Integrating economic costs into conservation planning. Trends in Ecology & Evolution, 21, 681–687.CrossRefGoogle Scholar
  31. 31.
    Naidoo, R., & Iwamura, T. (2007). Global-scale mapping of economic benefits from agricultural lands: Implications for conservation priorities. Biological Conservation, 140, 40–49.CrossRefGoogle Scholar
  32. 32.
    Newburn, D., Reed, S., Berck, P., & Merenlender, A. (2005). Economics and land-use change in prioritizing private land conservation. Conservation Biology, 19, 1411–1420.CrossRefGoogle Scholar
  33. 33.
    Polasky, S., Camm, J. D., & Garber-Yonts, B. (2001). Selecting biological reserves cost-effectively: An application to terrestrial vertebrate conservation in Oregon. Land Economics, 77, 68–78.CrossRefGoogle Scholar
  34. 34.
    Polasky, S., Nelson, E., Camm, J., Csuti, B., Fackler, P., Lonsdorf, E., et al. (2008). Where to put things? Spatial land management to sustain biodiversity and economic returns. Biological Conservation, 141, 1505–1524.CrossRefGoogle Scholar
  35. 35.
    Possingham, H., Ball, I., & Andelman, S. (2000). Mathematical methods for identifying representative reserve networks. In S. Ferson & M. A. Burgman (Eds.), Quantitative methods for conservation biology (pp. 291–306). New York: Springer.CrossRefGoogle Scholar
  36. 36.
    Pressey, R. L. (1994). Ad Hoc reservations—forward or backward steps in developing representative reserve systems. Conservation Biology, 8, 662–668.CrossRefGoogle Scholar
  37. 37.
    Pressey, R. L., Possingham, H. P., & Margules, C. R. (1996). Optimality in reserve selection algorithms: when does it matter and how much? Biological Conservation, 76, 259–267.CrossRefGoogle Scholar
  38. 38.
    Pressey, R. L., & Tully, S. L. (1994). The cost of Ad Hoc reservation—a case-study in Western New-South-Wales. Australian Journal of Ecology, 19, 375–384.CrossRefGoogle Scholar
  39. 39.
    Pullin, A. S. (2002). Conservation biology. Cambridge: Cambridge University Press.Google Scholar
  40. 40.
    ReVelle, C. S., Williams, J. C., & Boland, J. J. (2002). Counterpart models in facility location science and reserve selection science. Environmental Modeling and Assessment, 7, 71–80.CrossRefGoogle Scholar
  41. 41.
    Riley, J. (2002). Population sizes and the status of endemic and restricted-range bird species on Sangihe Island, Indonesia. Bird Conservation International, 12, 53–78.CrossRefGoogle Scholar
  42. 42.
    Rondinini, C., & Boitani, L. (2007). Systematic conservation planning and the cost of tackling conservation conflicts with large carnivores in Italy. Conservation Biology, 21, 1455–1462.CrossRefGoogle Scholar
  43. 43.
    Rosing, K. E., ReVelle, C. S., & Williams, J. C. (2002). Maximizing species representation under limited resources: a new and efficient heuristic. Environmental Modeling and Assessment, 7, 91–98.CrossRefGoogle Scholar
  44. 44.
    Saetersdal, M., Line, J. M., & Birks, H. J. B. (1993). How to maximize biological diversity in nature-reserve selection—vascular plants and breeding birds in deciduous Woodlands, Western Norway. Biological Conservation, 66, 131–138.CrossRefGoogle Scholar
  45. 45.
    Sarkar, S., Pressey, R. L., Faith, D. P., Margules, C. R., Fuller, T., Stoms, D. M., et al. (2006). Biodiversity conservation planning tools: present status and challenges for the future. Annual Review of Environment and Resources, 31, 123–159.CrossRefGoogle Scholar
  46. 46.
    Schleupner, C. (2007). Estimation of Spatial Wetland Distribution Potentials in Europe. FNU-135. Centre for Marine and Atmospheric Science, Hamburg University.Google Scholar
  47. 47.
    Schleupner, C., & Schneider, U. A. (2010). Effects of bioenergy policies and targets on European wetland restoration options. forthcoming in. Environmental Science & Policy. doi: 10.1016/j.envsci.2010.07.005.Google Scholar
  48. 48.
    Schneider, U. A., Balkovic, J., de Cara, S., Franklin, O., Fritz, S., Havlik, P., Huck, I., Jantke, K., Kallio, M. A., Kraxner, F., Moiseyev, A., Obersteiner, M. (2008). The European Forest and Agriculture Optimisation Model—EUFASOM. FNU-156. Centre for Marine and Atmospheric Science, Hamburg University.Google Scholar
  49. 49.
    Schwanghart, W., Beck, J., & Kuhn, N. (2008). Measuring population densities in a heterogeneous world. Global Ecology and Biogeography, 17, 566–568.CrossRefGoogle Scholar
  50. 50.
    Shogren, J. F., Tschirhart, J., Anderson, T., Ando, A. W., Beissinger, S. R., Brookshire, D., et al. (1999). Why economics matters for endangered species protection. Conservation Biology, 13, 1257–1261.CrossRefGoogle Scholar
  51. 51.
    Stewart, R., Noyce, T., & Possingham, H. P. (2003). Opportunity cost of ad hoc marine reserve design decisions: an example from South Australia. Marine Ecology Progress Series, 253, 25–38.CrossRefGoogle Scholar
  52. 52.
    Stewart, R., & Possingham, H. (2005). Efficiency, costs and trade-offs in marine reserve system design. Environmental Modeling and Assessment, 10, 203–213.CrossRefGoogle Scholar
  53. 53.
    Tognelli, M. F., de Arellano, P. I. R., & Marquet, P. A. (2008). How well do the existing and proposed reserve networks represent vertebrate species in Chile? Diversity and Distributions, 14, 148–158.CrossRefGoogle Scholar
  54. 54.
    Vanderkam, R. P. D., Wiersma, Y. F., & King, D. J. (2007). Heuristic algorithms vs. linear programs for designing efficient conservation reserve networks: Evaluation of solution optimality and processing time. Biological Conservation, 137, 349–358.CrossRefGoogle Scholar
  55. 55.
    Verboom, J., Foppen, R., Chardon, P., Opdam, P., & Luttikhuizen, P. (2001). Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biological Conservation, 100, 89–101.CrossRefGoogle Scholar
  56. 56.
    Watzold, F., Drechsler, M., Armstrong, C. W., Baumgartner, S., Grimm, V., Huth, A., et al. (2006). Ecological-economic modeling for biodiversity management: Potential, pitfalls, and prospects. Conservation Biology, 20, 1034–1041.CrossRefGoogle Scholar
  57. 57.
    Williams, P. H., & Araujo, M. B. (2002). Apples, oranges, and probabilities: Integrating multiple factors into biodiversity conservation with consistency. Environmental Modeling and Assessment, 7, 139–151.CrossRefGoogle Scholar
  58. 58.
    Williams, J., ReVelle, C., & Levin, S. (2005). Spatial attributes and reserve design models: A review. Environmental Modeling and Assessment, 10, 163–181.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Research Unit Sustainability and Global Change, KlimaCampus, University of HamburgHamburgGermany
  2. 2.International Max Planck Research School on Earth System ModellingMax Planck Institute for MeteorologyHamburgGermany

Personalised recommendations