Environmental Modeling & Assessment

, Volume 16, Issue 2, pp 119–133 | Cite as

Mapping Cumulative Environmental Risks: Examples from the EU NoMiracle Project

  • Alberto Pistocchi
  • Jan Groenwold
  • Joost Lahr
  • Mark Loos
  • Marelys Mujica
  • Ad M. J. Ragas
  • Robert Rallo
  • Serenella Sala
  • Uwe Schlink
  • Kathrin Strebel
  • Marco Vighi
  • Pilar Vizcaino
Article

Abstract

We present examples of cumulative chemical risk mapping methods developed within the NoMiracle project. The different examples illustrate the application of the concentration addition (CA) approach to pesticides at different scale, the integration in space of cumulative risks to individual organisms under the CA assumption, and two techniques to (1) integrate risks using data-driven, parametric statistical methods, and (2) cluster together areas with similar occurrence of different risk factors, respectively. The examples are used to discuss some general issues, particularly on the conventional nature of cumulative risk maps, and may provide some suggestions for the practice of cumulative risk mapping.

Keywords

Cumulative environmental risk GIS mapping Mixtures Multiple stressors Pesticides Metals Spatial distribution 

Supplementary material

10666_2010_9230_MOESM1_ESM.doc (1.1 mb)
Figure S1Sample map of mass equivalent (criterion: acute toxicity to earthworms) (DOC 1108 kb)
10666_2010_9230_MOESM2_ESM.doc (26 kb)
Figure S2Average potential ecological effects per grid cell of three insecticides calculated by the NMI for the year 1998 (DOC 26 kb)
10666_2010_9230_MOESM3_ESM.doc (436 kb)
Figure S3Potential effects of chlorpyrifos on water organisms in 1998 calculated by the NMI (DOC 435 kb)
10666_2010_9230_MOESM4_ESM.doc (228 kb)
Figure S4Potential effects of chlorpyrifos leaching to groundwater in 1998 calculated by the NMI (DOC 228 kb)
10666_2010_9230_MOESM5_ESM.doc (436 kb)
Figure S5Accumulated potential effects of three insecticides (chlorpyrifos, imidacloprid, and diazinon) on water organisms in 1998 calculated by the NMI (DOC 436 kb)
10666_2010_9230_MOESM6_ESM.doc (26 kb)
Figure S6Average potential effects of diazinon on water organisms during 1998 calculated by the NMI (DOC 26 kb)
10666_2010_9230_MOESM7_ESM.doc (30 kb)
Table S1Criteria for risk indicator mapping at European scale: summary of HAIR indicators and maps to be used (E = emission; D = drift; M = mass in soil; L = loads to water bodies; Cw = concentration in soil water phase) (DOC 30 kb)
10666_2010_9230_MOESM8_ESM.doc (28 kb)
Table S2Available toxicological parameters for the chemicals considered in this study (DOC 28 kb)
10666_2010_9230_MOESM9_ESM.doc (53 kb)
Table S3Substance classes used in the present study (DOC 53 kb)
10666_2010_9230_MOESM10_ESM.doc (32 kb)
Table S4Properties of three pesticides used for demonstration (DOC 32 kb)

References

  1. 1.
    Aller, L., Bennet, T., et al. (1987). DRASTIC, a standardized system for evaluating groundwater pollution potential using hydrogeologic setting. U.S. Environmental Protection Agency, EPA, Report 600/2-87-035; 1-455.Google Scholar
  2. 2.
    Bartels, C. J., & Van Beurden, A. U. C. J. (1998). Using geographic and cartographic principles for environmental assessment and risk mapping. Journal of Hazardous Materials, 61, 115–124.CrossRefGoogle Scholar
  3. 3.
    Best, N., Richardson, S., & Elliott, P. (2003) Spatial epidemiology. Short Course, September 8–9.Google Scholar
  4. 4.
    BImSchV, 22 (2007) Verordnung zur Durchführung des Bundes-Immissionschutzgesetzes (Verordnung über Immissionswerte für Schadstoffe in der Luft). Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit.Google Scholar
  5. 5.
    Bliss, C. I. (1939). The toxicity of poisons applied jointly. The Annals of Applied Biology, 26, 585–615.CrossRefGoogle Scholar
  6. 6.
    Boedeker, W., Drescher, K., Altenburger, R., Faust, M., & Grimme, L. H. (1993). Combined effects of toxicants: the need and soundness of assessment approaches in ecotoxicology. Science of the Total Environment, 134(2), 931–938.CrossRefGoogle Scholar
  7. 7.
    Bonzini, S., Verro, R., Otto, S., Lazzaro, L., Finizio, A., Zanin, G., et al. (2006). Experimental validation of a GIS-based procedure for predicting pesticide exposure in surface water. Environmental Science & Technology, 40, 7561–7569.CrossRefGoogle Scholar
  8. 8.
    Chung, C. F., & Fabbri, A. G. (1993). The representation of geoscience information for data integration. Nonrenewable Resources, 2(2), 122–139.CrossRefGoogle Scholar
  9. 9.
    Chung, C. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65(12), 1389–1399.Google Scholar
  10. 10.
    De Lange, H. J., Sala S., Vighi M., & Faber J. H. (2010) Ecological vulnerability in risk assessment—A review and perspectives. Science of the Total Environment (in press)Google Scholar
  11. 11.
    de Zwart, D. (2005). Ecological effects of pesticide use in the Netherlands: modeled and observed effects in the field ditch. Integrated Environmental Assessment and Management, 1(2), 123–134.CrossRefGoogle Scholar
  12. 12.
    Drescher, K., & Boedeker, W. (1995). Assessment of the combined effects of substances: the relationship between concentration addition and independent action. Biometrics, 51, 716–730.CrossRefGoogle Scholar
  13. 13.
    Elliott, P., & Wartenberg, D. (2004). Spatial epidemiology: current approaches and future challenges. Environmental Health Perspectives, 112, 998–1006.CrossRefGoogle Scholar
  14. 14.
    Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Bödeker, W., Gramatica, P., et al. (2003). Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquatic Toxicology, 63, 43–63.CrossRefGoogle Scholar
  15. 15.
    Finizio, A., Calliera, M., & Vighi, M. (2001). Rating systems for pesticide risk classification on different ecosystems. Ecotoxicology and Environmental Safety, 49, 262–274.CrossRefGoogle Scholar
  16. 16.
    Finizio, A., Villa, S., & Vighi, M. (2005). Predicting pesticide mixtures load in surface waters from a given crop. Agriculture, Ecosystems & Environment, 111, 111–118.CrossRefGoogle Scholar
  17. 17.
    Greco, W., Unkelbach, H. D., Pöch, G., Suhnel, J., Kundi, M., & Bodeker, W. (1992). Consensus on concepts and terminology for combined-action assessment: the Saariselkä agreement. Archives of Complex Environmental Studies, 4(3), 65–72.Google Scholar
  18. 18.
    Hansen, A. B., & Palmgren, F. (1996). VOC air pollutants in Copenhagen. The Science of the Total Environment, 190, 451–457.CrossRefGoogle Scholar
  19. 19.
    Hollands, J. G., & Spence, I. (1998). Judging proportion with graphs: the summation model. Applied Cognitive Psychology, 12, 173–190.CrossRefGoogle Scholar
  20. 20.
    Husdal, J. (2001) Can it be that dangerous? Issues in visualization of risk and vulnerability. http://husdal.typepad.com/blog/2001/10/can-it-really-b.html.
  21. 21.
    Ippolito, A., Sala, S., Faber, J. H., & Vighi, M. (2010) Application of vulnerability analysis; a case study of river basin. Science of the Total Environment (in press).Google Scholar
  22. 22.
    Jarosinska, D. (2009). Protecting human health and ecosystems—connecting novel research, practice and policy on multiple stressors Proc. NoMiracle/PHIME Conference “Multiple Stressors—Novel Methods for Integrated Risk Assessment” Aarhus, Denmark, 28th–30th September. http://nomiracle.jrc.ec.europa.eu/Documents/Conference_28-30_September_2009/Proceedings.pdf.
  23. 23.
    Jo, W. K., Lee, J. W., & Shin, D. C. (2004). Exposure to volatile organic compounds in residences adjacent to dyeing industrial complex. International Archives of Occupational and Environmental Health, 77(2), 113–120.CrossRefGoogle Scholar
  24. 24.
    Junghans, M., Backhaus, T., Faust, M., Scholze, M., & Grimme, L. H. (2006). Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquatic Toxicology, 76, 93–110.CrossRefGoogle Scholar
  25. 25.
    Kangas, J. A., Kohonen, T. K., & Laaksonen, J. T. (1990). Variants of self-organizing maps. IEEE Transactions on Neural Networks, 1, 93–99.CrossRefGoogle Scholar
  26. 26.
    Kaski, S. (1997). Data exploration using Self-Organizing Maps. Dissertation for the degree of Doctor of Technology, Helsinki University of Technology, Espoo.Google Scholar
  27. 27.
    Kohonen, T. (1990). The self-organizing map. Proc IEEE, 78, 1464–1480.CrossRefGoogle Scholar
  28. 28.
    Lahr, J., & Kooistra, L. (2009) Environmental risk mapping: state of the art and communication aspects. Science of the Total Environment (in press).Google Scholar
  29. 29.
    Lahr, J., & Kooistra, L. (2010). Environmental risk mapping of pollutants: state of the art and communication aspects. Science of the Total Environment. doi:10.1026/j.scitotenv.2009.10.045.Google Scholar
  30. 30.
    Loos, M., Ragas, A. M. J., Plasmeijer, M. J., & Hendriks, A. J. (2010) A receptor-oriented ecological exposure model for terrestrial vertebrates in an object-oriented programming platform. Science of the Total Environment (in press).Google Scholar
  31. 31.
    Moen, J. E. T., & Ale, B. J. M. (1998). Risk maps and communication. Journal of Hazardous Materials, 61, 271–278.CrossRefGoogle Scholar
  32. 32.
    Nelson, P. (2000). Australia's national plan to combat pollution of the sea by oil and other noxious and hazardous substances—overview and current issues. Spill Science & Technology Bulletin, 6, 3–11.CrossRefGoogle Scholar
  33. 33.
    Pekey, H., & Arslanbas, D. (2008). The relationship between indoor, outdoor and personal VOC concentrations in homes, offices and schools in the metropolitan region of Kocaeli, Turkey. Water, Air, and Soil Pollution, 191(1–4), 113–129.CrossRefGoogle Scholar
  34. 34.
    Piscopo, G. (2001). Groundwater vulnerability map explanatory notes, Castlereagh Catchment. NSW Department of Land and Water Conservation, Australia.Google Scholar
  35. 35.
    Pistocchi, A., & Bidoglio, G. (2009) Is it presently possible to assess the spatial distribution of agricultural pesticides for continental Europe? A screening study based on available data.Google Scholar
  36. 36.
    Pistocchi, A., Luzi, L., & Napolitano, P. (2002). The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert-system-like methods. Environmental Geology, 41(7), 765–775.CrossRefGoogle Scholar
  37. 37.
    Pistocchi, A., Vizcaino, P., & Hauck, M. (2010) A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. Journal of Environmental Management. ISSN 0301-4797. doi:10.1016/j.jenvman.2009.05.020.
  38. 38.
    Pistocchi, A., Vizcaino, P., & Sarigiannis, D. Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. Science of the Total Environment. doi:10.1016/j.scitotenv.2009.10.046
  39. 39.
    Plackett, R. L., & Hewlett, P. S. (1952). Quantal responses to mixtures of poisons. Journal of the Royal Statistical Society. Series B, 14, 141–163.Google Scholar
  40. 40.
    Price, P. S., Chaisson, C. F., Koontz, M., Wilkes, C., Ryan, B., Macintosh, D., et al. (2003). Construction of a comprehensive chemical exposure framework using person-oriented modeling. Annandale: The LifeLine Group. 129 pp.Google Scholar
  41. 41.
    Sala, S., & Vighi, M. (2007). GIS-based procedure for site-specific risk assessment of pesticides for aquatic ecosystems. Ecotoxicology and Environmental Safety, 69(1), 1–12.CrossRefGoogle Scholar
  42. 42.
    Sattler, B., Lippy, B., & Jordan T. (1997) Hazard communication: a review of the science underpinning the art of communication for health and safety. US Department of Labor, Washington, DC. http://www.osha.gov/SLTC/hazardcommunications/hc2inf2.html. Accessed May 2009
  43. 43.
    Schipper, A. M., Loos, M., Ragas, A. M. J., Lopes, J. P. C., Nolte, B., Wijnhoven, S., et al. (2008). Modeling the influence of environmental heterogeneity on heavy metal exposure concentrations for terrestrial vertebrates in river floodplains. Environmental Toxicology and Chemistry, 27, 919–932.CrossRefGoogle Scholar
  44. 44.
    Schlink, U., Rehwagen, M., Damm, M., Richter, M., Borte, M., & Herbarth, O. (2004). Seasonal cycle of indoor-VOCs: comparison of apartments and cities. Atmospheric Environment, 38(8), 1181–1190.CrossRefGoogle Scholar
  45. 45.
    Schneider, P., Gebefugi, I., Richter, K., Wolke, G., Schnelle, J., Wichmann, H. E., et al. (2001). Indoor and outdoor BTX levels in German cities. The Science of the Total Environment, 267(1–3), 41–51.CrossRefGoogle Scholar
  46. 46.
    Srivastava, A. (2005). Variability in VOC concentrations in an urban area of Delhi. Environmental Monitoring and Assessment, 107(1–3), 363–373.CrossRefGoogle Scholar
  47. 47.
    Tait, N. G., Lerner, D. N., Smith, J. W. N., & Leharne, S. A. (2004). Prioritisation of abstraction boreholes at risk from chlorinated solvent contamination on the UK Permo-Triassic sandstone aquifer using a GIS. The Science of the Total Environment, 319, 77–98.CrossRefGoogle Scholar
  48. 48.
    Thomas, A., Best, N., Lunn, D., Arnold, R., & Spiegelhalter, D. (2004). GeoBUGS user manual, version 1.2. Cambridge: Medical Research Council Biostatistics Unit; 2004. http://www.mrcbsu.cam.ac.uk/bugs/winbugs/geobugs.shtml.
  49. 49.
    Tortell, P. (1992). Coastal zone sensitivity mapping and its role in marine environmental management. Marine Pollution Bulletin, 25, 88–93.CrossRefGoogle Scholar
  50. 50.
    Van der Linden, A. M. A., Luttik, R., Deneer, J. W., & Smidt, R. A. (2004). Dutch environmental indicator for plant protection products. Description of input data and calculation methods. Report no. 716601009/2004, RIVM/Alterra, Bilthoven/Wageningen, The Netherlands.Google Scholar
  51. 51.
    Van der Linden A. M. A., van Beelen, P., van den Berg, G. A., de Boer, M., van der Gaag, D. J., Groenwold, J. G., et al. (2006) Evaluation sustainable crop protection. Report nr. RIVM607016001, RIVM, Bilthoven, The Netherlands.Google Scholar
  52. 52.
    Van der Linden, A. M. A., Luttik, R., Groenwold, J. G., Kruijne en, R., & Merkelbach, R. C. M. (2008). Dutch Environmental Indicator for plant protection products, version 2. Input, calculation and aggregation procedures, Report nr. 607600002/2008, RIVM, Bilthoven, The Netherlands.Google Scholar
  53. 53.
    Van Leeuwen, C. J., & Hermens, J. L. M. (1995). Risk assessment of chemicals: An introduction. Dordrecht: Kluwer. 374 pp.Google Scholar
  54. 54.
    U.S. EPA (2006). Considerations for Developing Alternative Health Risk Assessment Approaches for Addressing Multiple Chemicals, Exposures and Effect (External Review Draft). U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-06/014A, 2006.Google Scholar
  55. 55.
    Verro, R., Finizio, A., Otto, S., & Vighi, M. (2009). Predicting pesticide environmental risk in intensive agricultural areas. II: Screening level risk assessment of complex mixtures in surface waters. Environmental Science & Technology, 43, 530–53.CrossRefGoogle Scholar
  56. 56.
    Verro, R., Finizio, A., Otto, S., & Vighi, M. (2009). Predicting pesticide environmental risk in intensive agricultural areas. I: Screening level risk assessment of individual chemicals in surface waters. Environmental Science & Technology, 43, 522–529.CrossRefGoogle Scholar
  57. 57.
    Vesanto, J. (1999). SOM-based data visualization methods. Intelligent Data Analysis, 3, 11–126.CrossRefGoogle Scholar
  58. 58.
    Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11, 586–600.CrossRefGoogle Scholar
  59. 59.
    Wogalter, M. S., Conzola, V. C., & Smith-Jackson, T. L. (2002). Research-based guidelines for warning design and evaluation. Applied Ergonomics, 33, 219–230.CrossRefGoogle Scholar
  60. 60.
    Wood, M., & Jelínek, R. (2007) Risk mapping in the new member states. A summary of general practices for mapping hazards, vulnerability and risk. Report no. EUR 22899 EN, Institute for the Protection and Security of the Citizen, Joint Research Centre, European Commission, Ispra, Italy, 26 pp.Google Scholar
  61. 61.
    Woodbury, P. B. (2003). DOs and DON’Ts of spatially explicit ecological risk assessment. Environmental Toxicology and Chemistry, 22, 977–982.CrossRefGoogle Scholar
  62. 62.
    Worrall, F., & Besien, T. (2005). The vulnerability of groundwater to pesticide contamination estimated directly from observations of presence or absence in wells. Journal of Hydrology, 303, 92–107.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alberto Pistocchi
    • 1
    • 7
  • Jan Groenwold
    • 2
  • Joost Lahr
    • 2
  • Mark Loos
    • 3
  • Marelys Mujica
    • 4
  • Ad M. J. Ragas
    • 3
  • Robert Rallo
    • 4
  • Serenella Sala
    • 5
  • Uwe Schlink
    • 6
  • Kathrin Strebel
    • 6
  • Marco Vighi
    • 5
  • Pilar Vizcaino
    • 1
  1. 1.European Commission Joint Research CentreIspraItaly
  2. 2.AlterraWageningen URWageningenThe Netherlands
  3. 3.Department of Environmental Science, Institute for Water and Wetland ResearchRadboud University NijmegenNijmegenThe Netherlands
  4. 4.Departament d’Enginyeria Química i Departament d’Enginyeria Informatica i MatematiquesUniversitat Rovira i VirgiliTarragonaSpain
  5. 5.Department of Environmental SciencesUniversita’ di Milano BicoccaMilanItaly
  6. 6.Helmholz Centre for Environmental Research—UFZLeipzigGermany
  7. 7.European AcademyBolzanoItaly

Personalised recommendations