Environmental Modeling & Assessment

, Volume 16, Issue 1, pp 15–36 | Cite as

Confronting Management Challenges in Highly Uncertain Natural Resource Systems: a Robustness–Vulnerability Trade-off Approach

  • Armando A. Rodriguez
  • Oguzhan Cifdaloz
  • John Martin Anderies
  • Marco A. Janssen
  • Jeffrey Dickeson
Article

Abstract

This paper presents a framework for the study of policy implementation in highly uncertain natural resource systems in which uncertainty cannot be characterized by probability distributions. We apply the framework to parametric uncertainty in the traditional Gordon–Schaefer model of a fishery to illustrate how performance can be sacrificed (traded-off) for reduced sensitivity and hence increased robustness, with respect to model parameter uncertainty. With sufficient data, our robustness–vulnerability analysis provides tools to discuss policy options. When less data are available, it can be used to inform the early stages of a learning process. Several key insights emerge from this analysis: (1) the classic optimal control policy can be very sensitive to parametric uncertainty, (2) even mild robustness properties are difficult to achieve for the simple Gordon–Schaefer model, and (3) achieving increased robustness with respect to some parameters (e.g., biological parameters) necessarily results in increased sensitivity (decreased robustness) with respect to other parameters (e.g., economic parameters). We thus illustrate fundamental robustness–vulnerability trade-offs and the limits to robust natural resource management. Finally, we use the framework to explore the effects of infrequent sampling and delays on policy performance.

Keywords

Resource management Uncertainty Robust control Policy implementation Learning Vulnerability 

Notes

Acknowledgements

The authors would like to thank Elinor Ostrom, William Brock, Charles Perrings, and Ann Kinzig for helpful comments on earlier drafts of this manuscript.

References

  1. 1.
    Abaunza, P., Celso Fariña, A., & Murta, A. (2003). Applying biomass dynamic models to the southern horse mackerel stock (Atlantic Waters of Iberian Peninsula). A comparison with VPA-based methods. Scientia Marina, 67(Suppl. 1), 291–300.Google Scholar
  2. 2.
    Anderies, J. M., Rodriguez, A., Janssen, M., & Cifdaloz, O. (2007). Panaceas, uncertainty, and the robust control framework in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 104, 15194–15199.CrossRefGoogle Scholar
  3. 3.
    Andersen, P. (1982). Commercial fisheries under price uncertainty. Journal of Environmental Economics and Management, 9(1), 11–28.CrossRefGoogle Scholar
  4. 4.
    Babonneau, F., Vial, J. P., & Apparigliato, R. (2010). Robust optimization for environmental and energy planning. In J. A. Filar, & A. Haurie (Eds.), Uncertainty and environmental decision making. International series in operations research & management science (Vol. 138, no. 3, pp. 79–126). New York: Springer.Google Scholar
  5. 5.
    Belmiloudi, A. (2005). Nonlinear optimal control problems of degenerate parabolic equations with logistic time-varying delays of convolution type. Nonlinear Analysis-theory Methods & Applications, 63(8), 1126–1152.CrossRefGoogle Scholar
  6. 6.
    Belmiloudi, A. (2006). Minimax control problems of periodic competing parabolic systems with logistic growth terms. International Journal of Control, 79(2), 150–161.CrossRefGoogle Scholar
  7. 7.
    Ben-Tal, A., El-Ghaoui L., & Nemirovski, A. (2000). Robust semidefinite programming. In R. Saigal, L. Vandenberghe, & H. Wolkowicz (Eds.), Semidefinite programming and applications. Dordrecht: Kluwer.Google Scholar
  8. 8.
    Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805.CrossRefGoogle Scholar
  9. 9.
    Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization—methodology and applications. Mathematical Programming, 92(3, Ser. B), 453–480. (ISMP 2000, Part 2, Atlanta, GA).CrossRefGoogle Scholar
  10. 10.
    Ben-Tal, A., & Nemirovski, A. (2008). Selected topics in robust convex optimization. Mathematical Programming, 112(1), 125–158.CrossRefGoogle Scholar
  11. 11.
    Bode, H. W. (1945). Network analysis and feedback amplifier design. Princeton: Van Nostrand.Google Scholar
  12. 12.
    Carpenter, S. A., Ludwig, D., & Brock, W. A. (1999). Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications, 9(3), 751–771.CrossRefGoogle Scholar
  13. 13.
    Clark, C. (2006). Fisheries bioeconomics: Why is it so misunderstood? Population Ecology, 48, 95–98.CrossRefGoogle Scholar
  14. 14.
    Clark, C. (2006). The worldwide crisis in fisheries: Economic models and human behavior. Cambridge: Cambridge University Press.Google Scholar
  15. 15.
    Clark, C., & Kirkwood, G. (1986). On uncertain renewable resource stocks—Optimal harvest policies and the value of stock surveys. Journal of Environmental Economics and Management, 13(3), 235–244.CrossRefGoogle Scholar
  16. 16.
    Clark, C., Munro, G., & Sumaila, U. R. (2005). Subsidies, buybacks, and sustainable fisheries. Journal of Environmental Economics and Management, 50, 47–58.CrossRefGoogle Scholar
  17. 17.
    Clark, C. W. (1990). Mathematical bioeconomics: The optimal management of renewable resources (2nd Ed.). New York: Wiley.Google Scholar
  18. 18.
    Dercole, F., Gragnani, A., Kuznetsov, Y. A., & Rinaldi, S. (2003). Numerical sliding bifurcation analysis: An application to a relay control system. IEEE Transactions on Circuits and Systems I—Fundamental Theory and Applications, 50(8), 1058–1063.CrossRefGoogle Scholar
  19. 19.
    Gordon, H. (1954). The economic theory of a common property resource: The fishery. Journal of Political Economy, 62, 124–142.CrossRefGoogle Scholar
  20. 20.
    Hansen, L. P., & Sargent, T. J. (2007). Robustness. Princeton: Princeton University Press.Google Scholar
  21. 21.
    Holland, D., Gudmundsson, E., & Gates, J. (1999). Do fishing vessel buyback programs work? A survey of the evidence. Marine Policy, 23, 47–69.CrossRefGoogle Scholar
  22. 22.
    Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.CrossRefGoogle Scholar
  23. 23.
    Holling, C. S. (1986). The resilience of terrestrial ecosystems, local surprise and global change. In Clark, W. C., & Munn, R. E. (Eds.), Sustainable development of the biosphere (pp. 292–317). Cambridge: Cambridge University Press.Google Scholar
  24. 24.
    Holling, C. S., & Gunderson, L. H. (2002). Resilience and adaptive cycles. In L. H. Gunderson, & C. S. Holling (Eds.), Panarchy: Understanding transformations in systems of humans and nature (Chap. 2). Washington, DC: Island.Google Scholar
  25. 25.
    Infante, E. F., & Stein, J. L. (1973). Optimal growth with robust feedback control. The Review of Economic Studies, 40(1), 47–60.CrossRefGoogle Scholar
  26. 26.
    ISRIC (1990). Global assessment of the status of human induced soil degradation (glasdod). Dataset. Wageningen: International Soil Reference and Information Centre.Google Scholar
  27. 27.
    Kendrick, D. A. (2005). Stochastic control for economic models: Past, present and the paths ahead. Journal of Economic Dynamics and Control, 29, 3–30.CrossRefGoogle Scholar
  28. 28.
    Koenig, E. F. (1984). Controlling stock externalities in a common property fishery subject to uncertainty. Journal of Environmental Economics and Management, 11(2), 124–138.CrossRefGoogle Scholar
  29. 29.
    Lauck, T., Clark, C., Mangel, M., & Munro, G. (1998). Implementing the precautionary principle in fisheries management through marine reserves. Ecological Applications, 8(1), S72–S78 (Supplement).CrossRefGoogle Scholar
  30. 30.
    Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C. (2006). A general, analytic method for generating robust strategies and narrative scenarios. Management Science, 52(4), 514–528.CrossRefGoogle Scholar
  31. 31.
    Lempert, R. J., & Schlesinger, M. E. (2000). Robust strategies for abating climate change—An editorial essay. Climatic Change, 45(3–4), 387–401.CrossRefGoogle Scholar
  32. 32.
    Luce, D. R., & Raiffa, H. (1957). Games and decisions: Introduction and critical survey. New York: Wiley.Google Scholar
  33. 33.
    Ludwig, D., Walker, B., & Holling, C. S. (1997). Sustainability, stability, and resilience. Conservation Ecology, 1(1), URL: http://www.consecol.org/vol1/iss1/art7/.
  34. 34.
    Ludwig, D., & Walters, C. (1982). Optimal harvesting with imprecise parameter estimates. Ecological Modelling, 14, 273–292.CrossRefGoogle Scholar
  35. 35.
    Moran, E. F., & Ostrom, E. (Eds.) (2006). Seeing the forest and the trees: Human–environment interactions in forest ecosystems. Cambridge: MIT.Google Scholar
  36. 36.
    Myers, R., & Worm, B. (2003) Rapid worldwide depletion of predatory fish communities. Nature, 423, 280–283.CrossRefGoogle Scholar
  37. 37.
    Rodriguez, A. A. (2003). Analysis and design of feedback control systems. Tempe: Control3D, LLC.Google Scholar
  38. 38.
    Rodriguez, A. A. (2004). Analysis and design of multivariable feedback control systems. Tempe: Control3D, LLC.Google Scholar
  39. 39.
    Schaefer, M. (1957). Some considerations of population dynamics and economics in relation to the management of the commercial marine fisheries. Journal of the Fisheries Research Board of Canada, 14(5), 669–681.Google Scholar
  40. 40.
    Sethi, G., Costello, C., Fisher, A., Hanemann, M., & Karp, L. (2005). Fishery management under multiple uncertainty. Journal of Environmental Economics and Management, 50(2), 300–318.CrossRefGoogle Scholar
  41. 41.
    Shah, T., Molden, D., Sakthivadivel, R., & Seckler, D. (2000). The global groundwater situation: Overview of opportunities and challenges. Tech. rep., International Water Management Institute, Colombo, Sri Lanka.Google Scholar
  42. 42.
    Stinstra, E., & den Hertog, D. (2008). Robust optimization using computer experiments. European Journal of Operational Research, 191(3), 816–837.CrossRefGoogle Scholar
  43. 43.
    Walters, C. (1986). Adaptive management of renewable resources. New York: MacMillan.Google Scholar
  44. 44.
    Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 129(4), 370–380.CrossRefGoogle Scholar
  45. 45.
    Weitzman, M. (2002). Landing fees vs harvest quotas with uncertain fish stocks. Journal of Environmental Economics and Management, 43(2), 325–338.CrossRefGoogle Scholar
  46. 46.
    Wilen, J., & Homans, F. (1998). What do regulators do? Dynamic behavior of resource managers in the North Pacific Halibut Fishery 1935–1978. Ecological Economics, 24(2–3), 289–298.CrossRefGoogle Scholar
  47. 47.
    Zhou, K., & Doyle, J. (1998). Essentials of robust control. Upper Saddle River: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Armando A. Rodriguez
    • 1
  • Oguzhan Cifdaloz
    • 2
  • John Martin Anderies
    • 2
  • Marco A. Janssen
    • 2
  • Jeffrey Dickeson
    • 1
  1. 1.Intelligent Embedded Systems Laboratory (IeSL), Department of Electrical EngineeringArizona State UniversityTempeUSA
  2. 2.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA

Personalised recommendations