Advertisement

Environmental Modeling & Assessment

, Volume 15, Issue 5, pp 369–380 | Cite as

Effects of Temperature–Climate Patterns on the Production of Some Competitive Species on Grounds of Modelling

  • Ágota Drégelyi-KissEmail author
  • Levente Hufnagel
Article

Abstract

Climate change has serious effects on the setting up and the operation of natural ecosystems. Small increase in temperature could cause rise in the amount of some species or potential disappearance of others. During our researches, the dispersion of the species and biomass production of a theoretical ecosystem were examined on the effect of the temperature–climate change. The answers of the ecosystems which are given to the climate change could be described by means of global climate modelling and dynamic vegetation models. The examination of the operation of the ecosystems is only possible in huge centres on supercomputers because of the number and the complexity of the calculation. The number of the calculation could be decreased to the level of a PC by considering the temperature and the reproduction during modelling a theoretical ecosystem, and several important theoretical questions could be answered.

Keywords

Climate modelling Ecosystem Biomass production 

Notes

Acknowledgements

This investigation was supported by the projects NKFP 4/037/2001 and OTKA T042583, the VAHAVA project, the Adaptation to Climate Change Research Group of the Hungarian Academy of Sciences and the Department of Mathematics and Informatics, Corvinus University of Budapest.

References

  1. 1.
    Baranovic, A., Solic, M., Vucetic, T., & Krstulovic, N. (1993). Temporal fluctuations of zooplankton and bacteria in the middle Adriatic Sea. Marine Ecology Progress Series, 92, 65–75.CrossRefGoogle Scholar
  2. 2.
    Dippner, J. W., Kornilovs, G., & Sidrevics, L. (2000). Long-term variability of mesozooplankton in the Central Baltic Sea. Journal of Marine Systems, 25, 23–31.CrossRefGoogle Scholar
  3. 3.
    Dregelyi-Kiss, A., & Hufnagel, L. (2009). Simulations of Theoretical Ecosystem Growth Model (TEGM) during various climate conditions. Applied Ecology and Environmental Research, 7(1), 71–78.Google Scholar
  4. 4.
    Felföldy, L. (1981). A vizek környezettana. Általános hidrobiológia. Budapest: Mezőgazdasági Kiadó. Water environmental sciences.Google Scholar
  5. 5.
    Fischlin, A., Midgley, G. F., Price, J. T., Leemans, R., Gopal, B., Turley, C., et al. (2007). Ecosystems, their properties, goods, and services. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change (pp. 211–272). Cambridge: Cambridge University Press.Google Scholar
  6. 6.
    Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., et al. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10, 603–628.CrossRefGoogle Scholar
  7. 7.
    Friedlingstein, P., Cox, P. M., Betts, R. A., Bopp, L., von Bloh, W., Brovkin, V., et al. (2006). Climate-Carbon Cycle feedback analysis: Results from the C4MIP model incomparison. J. Climate, 19, 3337–3353.CrossRefGoogle Scholar
  8. 8.
    Hufnagel, L., Sipkay, C. S., Drégelyi-Kiss, Á., Farkas, E., Türei, D., Gergócs, V., et al. (2008). Klímaváltozás, Biodiverzitás és közösségökológiai folyamatok kölcsönhatásai. In Z. S. Harnos & L. Csete (Eds.), Klímaváltozás: Környezet-Kockázat-Társadalom (pp. 275–300). Budapest: Szaktudás Kiadó Ház.Google Scholar
  9. 9.
    Juhász-Nagy, P. (1984). Beszélgetések az ökológiáról. Budapest: Mezõgazdasági Kiadó. Conversation about ecology.Google Scholar
  10. 10.
    Juhász-Nagy, P. (1986). Egy operatív ökológia hiánya, szükséglete és feladatai (p. 251). Budapest: Akadémiai Kiadó.Google Scholar
  11. 11.
    Juhász-Nagy, P. (1993). Az eltűnõ sokféleség (A bioszféra-kutatás egy központi kérdése). Budapest: Scientia Kiadó.Google Scholar
  12. 12.
    Klein Tank, A. M. G., & Coauthors. (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22, 1441–1453.CrossRefGoogle Scholar
  13. 13.
    Parmesan, C., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–583.CrossRefGoogle Scholar
  14. 14.
    Péczeli, G. (1981). Éghajlattan (pp. 239–257). Budapest: Tankönyvkiadó.Google Scholar
  15. 15.
    Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644.CrossRefGoogle Scholar
  16. 16.
    Pianka, E. R. (1974). Niche overlap and diffuse competition. Proc. Nat. Acad. Sci. U. S. A., 71(5), 2141–2145.CrossRefGoogle Scholar
  17. 17.
    Précsényi, I. (1995). Alapvetõ kutatásszervezési, statisztikai és projectértékelési módszerek a szupraindividuális biológiában. Debrecen: KLTE.Google Scholar
  18. 18.
    Reynolds, C. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. 19.
    Sipkay, C. S., Hufnagel, L., Révész, A., & Petrányi, G. (2007). Seasonal dynamics of an aquatic macroinvertebrate assembly (Hydrobiological case study of Lake Balaton No. 2). Applied Ecology and Environmental Research, 5(2), 63–78.Google Scholar
  20. 20.
    Sipkay, C., Horváth, L., Nosek, J., Oertel, N., Vadadi-Fülöp, C., Farkas, E., et al. (2008). Analysis of climate change scenarios based on modelling of the seasonal dynamics of a Danubian copepod species. Applied Ecology and Environmental Research, 6(4), 101–108.Google Scholar
  21. 21.
    Spellerberg, I. F. (1991). Monitoring ecological change. Cambridge: Cambridge University Press.Google Scholar
  22. 22.
    Vadadi-Fülöp, C. S., Türei, D., Sipkay, C. S., Verasztó, C. S., Dregelyi-Kiss, A., & Hufnagel, L. (2008). Comparative assessment of climate change scenarios based on aquatic food web modelling. Environmental Modelling and Assessment, 14(5), 563–576.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Bánki Donát Faculty of Mechanical EngineeringBudapest TechBudapestHungary
  2. 2.Department of Mathematics and InformaticsCorvinus University of BudapestBudapestHungary

Personalised recommendations