Advertisement

Environmental Modeling & Assessment

, Volume 15, Issue 4, pp 239–250 | Cite as

Soil Erosion Potential after Fire and Rehabilitation Treatments in Greece

  • Dimitrios I. MyronidisEmail author
  • Dimitrios A. Emmanouloudis
  • Ioannis A. Mitsopoulos
  • Evangelos E. Riggos
Article

Abstract

Wildland fires are one of the more severe disturbances for natural ecosystems in the Mediterranean basin and can become a critical factor in the process of soil erosion. A quantitative assessment of soil erosion is needed in order to form an assessment on the extent and magnitude of post-fire soil erosion potential and to assess the effectiveness of the rehabilitation treatment. On 21 August 2006, a large wildland fire occurred in the Kassandra Peninsula in northern Greece, which burned one fifth of the Peninsula. After the fire, in order to protect the soil against erosion, the Forest Services applied a hillslope rehabilitation treatment of contour-felled logs and branch piles. In this paper, we report quantitative estimation of the wildland fire and erosion control treatment on soil erosion potential. The coupling of the Universal Soil Loss Equation and the Geographical Information Systems was implemented and the erosion potential was found to be 2.8 t/ha/year pre-fire, 29.5 t/ha/year post-fire, and 21.3 t/ha/year after rehabilitation treatment. The model can successfully contribute in the planning of the rehabilitation treatment but it cannot be used in the quantification of the soil loss after the application of the erosion control measures. The comparisons between the results of the three cases indicate the importance of the immediate erosion control measures in order to mitigate soil loss and restore the natural environment.

Keywords

Soil erosion Wildland fire Rehabilitation treatment Universal Soil Loss Equation GIS Greece 

Notes

Acknowledgements

We thank the personnel of the Forest Service in Kassandra, Chalkidiki, for their assistance with field measurements.

References

  1. 1.
    Agee, J. K. (1993). Fire ecology of Pacific Northwest forests. Washington, DC: Island.Google Scholar
  2. 2.
    Bagnouls, F., & Gaussen, H. (1957). Les climats biologiques et leur classification. Annales de Geographie, 66, 193–220.CrossRefGoogle Scholar
  3. 3.
    Cebecauer, T., & Hofierka, T. (2008). The consequences of land-cover changes on soil erosion distribution in Slovakia. Geomorphology, 98, 187–198.CrossRefGoogle Scholar
  4. 4.
    DeBano, L. F., Krammes, J. S., & Letey J. Jr (1967). Soil wettability and wetting agents: our current knowledge of the problem. USDA, Forest Service, Research Paper PSW, vol. 43, p. 13Google Scholar
  5. 5.
    DeBano, L. F., Neary, D. G., & Ffolliott, P. F. (1998). Fire’s effects on ecosystems. New York: Wiley.Google Scholar
  6. 6.
    Dunn P. H. & Debano L. F. (1977). Fire's effect on biological and chemical properties of chaparral soils. In: H. A. Mooney & C. E. Conrad (Eds), Proceedings of the Symposium on the Environmental Consequence of Fire and Fuel Management Ecosystems, General Technical Report WO-3, (pp. 75–84). U.S. Department of Agriculture, Forest Service.Google Scholar
  7. 7.
    Flocas, A. (1994). Meteorology and climatology. Thessaloniki: Ziti.Google Scholar
  8. 8.
    Gagari, P., Lyrintzis, G., Baloutsos, G. & Xanthopoulos, G. (2001, September). Contribution of log erosion barriers to soil protection and vegetation recovery after wildfire in a Pinus halepensis forest, in Greece. Paper presented in the International Conference, Forest Research: A Challenge for an Integrated European Approach, Thessaloniki, GreeceGoogle Scholar
  9. 9.
    Giovannini, G., Lucchesi, S., & Giachetti, M. (1988). Effect of heating on some physical and chemical-parameters related to soil aggregation and erodibility. Soil Science, 146, 255–261.CrossRefGoogle Scholar
  10. 10.
    Giovannini, G., Vallejo, R., Lucchesi, S., Bautista, S., Ciompi, S., & Liovet, J. (2001). Effects of land use and eventual fire on soil erodibility in dry Mediterranean conditions. Forest Ecology and Management, 147, 15–23.CrossRefGoogle Scholar
  11. 11.
    González-Pelayo, O., Andreu, V., Campo, J., Gimeno-García, E., & Rubio, J. L. (2006). Hydrological properties of a Mediterranean soil burned with different fire intensities. Catena, 68, 186–193.CrossRefGoogle Scholar
  12. 12.
    Hickey, R. (2000). Slope angle and slope length solutions for GIS. Cartography, 29, 1–8.Google Scholar
  13. 13.
    Hudson, N. (1985). Soil conservation. London: Batsford Academic and Educational.Google Scholar
  14. 14.
    Karydas, C., Sekuloska, T., & Silleos, G. (2008). Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environmental Monitoring and Assessment. doi: 10.1007/s10661-008-0179-8.Google Scholar
  15. 15.
    Kitahara, H., Okura, Y., Sammori, T., & Kawanami, A. (2000). Application of Universal Soil Loss Equation (USLE) to mountainous forests in Japan. Journal of Forest Research, 5, 231–236.CrossRefGoogle Scholar
  16. 16.
    Koppen, W. (1931). Grundriss der Klimakunde. Berlin: Walter de Gruyter.Google Scholar
  17. 17.
    Kutiel, P., Lavee, H., Segev, M., & Benyamini, Y. (1995). The effect of fire induced surface heterogeneity on rainfall–runoff–erosion relationships in an eastern Mediterranean ecosystem, Israel. Catena, 25, 77–87.CrossRefGoogle Scholar
  18. 18.
    Lee, S. (2004). Soil erosion assessment and its verification using the Universal Soil Loss Equation and Geographic Information System: a case study at Boun, Korea. Environmental Geology, 45, 457–46.CrossRefGoogle Scholar
  19. 19.
    Lufafaa, A., Tenywaa, M., Isabiryeb, M., Majaliwaa, M., & Woomerc, P. (2003). Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agricultural Systems, 76, 883–894.CrossRefGoogle Scholar
  20. 20.
    MacDonald, L. (1989, October). Rehabilitation and recovery following wildfires: a synthesis. Paper presented at the Symposium on Fire and Watershed Management, Sacramento, CaliforniaGoogle Scholar
  21. 21.
    Mathias (1919). La pluie en France. Annales de Physique XIGoogle Scholar
  22. 22.
    Mati, B., & Veihe, A. (2001). Application of the USLE in a savannah environment: comparative experiences from East and West Africa. Singapore Journal of Tropical Geography, 22(2), 138–155.CrossRefGoogle Scholar
  23. 23.
    Mayor, A., Bautista, S., Llovet, J., & Bellot, J. (2007). Post-fire hydrological and erosional responses of a Mediterranean landscape: seven years of catchment-scale dynamics. Catena, 71, 68–75.CrossRefGoogle Scholar
  24. 24.
    Merritt, W., Letcher, R., & Jakeman, A. (2003). A review of erosion and sediment transport model. Environmental Modelling & Software, 18, 761–799.CrossRefGoogle Scholar
  25. 25.
    Miles, S., Haskins, D. & Ranken, D. (1989, October). Emergency burn rehabilitation: cost, risk, and effectiveness. Paper presented at the Symposium on Fire and Watershed Management, Sacramento, CaliforniaGoogle Scholar
  26. 26.
    Miller, J., Nyhan, J., & Yool, S. (2003). Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss Equation. International Journal of Wildland Fire, 12, 85–100.CrossRefGoogle Scholar
  27. 27.
    Moffet, C., Pierson, F., Robichaud, P., Spaeth, K., & Hardegree, S. (2007). Modeling soil erosion on steep sagebrush rangeland before and after prescribed fire. Catena, 71, 218–228.CrossRefGoogle Scholar
  28. 28.
    Morgan, R. P. C. (1995). Soil erosion and Conservation (2nd ed.). Harlow: Longman.Google Scholar
  29. 29.
    Odura-Afriye, K. (1996). Rainfall erosivity map for Ghana. Geoderma, 74, 161–166.CrossRefGoogle Scholar
  30. 30.
    Onyando, J., Kisoyan, P., & Chemelil, M. (2005). Estimation of potential soil erosion for River Perkerra Catchment in Kenya. Water Resources Management, 19, 133–143.CrossRefGoogle Scholar
  31. 31.
    Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157, 287–306.CrossRefGoogle Scholar
  32. 32.
    Robichaud, P. (2005). Measurement of post-fire hillslope erosion to evaluate and model rehabilitation treatment effectiveness and recovery. International Journal of Wildland Fire, 14(4), 475–485.CrossRefGoogle Scholar
  33. 33.
    Robichaud, P., Beyers, J. & Neary, D. (2000). Evaluating the effectiveness of postfire rehabilitation treatments. General Technical Report RMRS-GTR-63, USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, ColoradoGoogle Scholar
  34. 34.
    Robichaud, P. & Brown, R. (1999, June). What happened after the smoke cleared: onsite erosion rates after a wildfire in eastern Oregon. Paper presented at Hydrology Conference of the American Water Resource Association, BozemanGoogle Scholar
  35. 35.
    Robichaud, P. & Brown, R. (2002). Silt fences: an economical technique for measuring hillslope soil erosion. Gen. Tech. Rep. RMRS-GTR-94. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 24 p.Google Scholar
  36. 36.
    Robichaud, P., Elliot, W., Pierson, F., Hall, D., & Moffet, C. (2007). Predicting postfire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena, 71, 229–241.CrossRefGoogle Scholar
  37. 37.
    Robichaud, P., Pierson, F., Brown, R., & Wagenbrenner, J. (2008). Measuring effectiveness of three postfire hillslope erosion barrier treatments, western Montana, USA. Hydrological Processes, 22, 159–170.CrossRefGoogle Scholar
  38. 38.
    Robichaud, P., Wagenbrenner, J., Brown, R., Wohlgemuth, P., & Beyers, B. (2008). Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the western United States. International Journal of Wildland Fire, 17, 255–273.CrossRefGoogle Scholar
  39. 39.
    Schwertmann, U., Vogl, W., & Kainz, M. (1990). Bodenerosion durch Wasser. Stuttgart: Verlag Eugen Ulmer.Google Scholar
  40. 40.
    Stathis, D. (1998). Meteorological features of Pindos from hydrological point of view. Ph.D. dissertation, Aristotelian University of Thessaloniki, GreeceGoogle Scholar
  41. 41.
    Troeh, F. R., Hobbs, J. A., & Donahue, R. L. (1991). Soil and water conservation (2nd ed.). Englewood Cliffs: Prentice-Hall.Google Scholar
  42. 42.
    Vaezi, A. R., Sadeghi, S. H. R., Bahrami, H. A., & Mahdian, M. H. (2008). Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology, 97, 414–423.CrossRefGoogle Scholar
  43. 43.
    Vafeidis, A., Drake, N., & Wainwright, J. (2007). A proposed method for modelling the hydrologic response of catchments to burning with the use of remote sensing and GIS. Catena, 70, 396–409.CrossRefGoogle Scholar
  44. 44.
    VaVentura, S. J., Chrisman, N. R., Conners, K., Gurda, R. F., & Martin, R. W. (1988). A land information system for soil erosion control planning. Journal of Soil and Water Conservation, 43, 230–233.Google Scholar
  45. 45.
    Wagenbrenner, J., MacDonald, L., & Rough, D. (2006). Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range. Hydrological Processes, 20, 2989–3006.CrossRefGoogle Scholar
  46. 46.
    Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses—a guide to conservation planning: Agricultural Handbook no. 537, USDA. Washington, D.C.: Forest Service.Google Scholar
  47. 47.
    Wohlgemuth, P., Hubbert, K., & Robichaud, P. (2001). The effects of log erosion barriers on post-fire hydrologic response and sediment yield in small forested watersheds, southern California. Hydrological Processes, 15, 3053–3066.CrossRefGoogle Scholar
  48. 48.
    Wu, S., Li, J., & Huang, G. (2005). An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models. Environmental Modeling and Assessment, 10, 33–42.CrossRefGoogle Scholar
  49. 49.
    Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research, 30, 1019–1028.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dimitrios I. Myronidis
    • 1
    Email author
  • Dimitrios A. Emmanouloudis
    • 1
  • Ioannis A. Mitsopoulos
    • 2
  • Evangelos E. Riggos
    • 1
  1. 1.Department of Forestry and Natural Environment ManagementTechnological Education Institute of KavalaDramaGreece
  2. 2.School of Forestry and Natural EnvironmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations