Environmental Modeling & Assessment

, Volume 15, Issue 3, pp 211–221 | Cite as

Application of System Dynamics on Shallow Multipurpose Artificial Lakes: A Case Study of Detention Pond at Tainan, Taiwan

  • Hone-Jay ChuEmail author
  • Liang-Cheng Chang
  • Yu-Pin Lin
  • Yung-Chieh Wang
  • Yu-Wen Chen


This study designs a multipurpose urban shallow artificial lake, including water supply, flood detention, and water environment preservation. It is expected to not only preserve a healthy water environment but to also retain water conservation and flood detention. This study adopts system dynamics (SD) to analyze the relationship between different purposes of water resources utilization. Furthermore, different operation strategies effects can be simulated by SD through a proposed urban multipurpose shallow artificial lake system. The results demonstrate the dynamic effects of strategies managers propose such as demand analysis, inflow control, and water quality improvement in this case study for Taiwan. SD aids lake system prediction and understanding temporally in sequential planning for water supply, environmental preservation, and flood detention. The SD model will hopefully serve as a reference to study different features before artificial lakes constructing.


Water resources planning System dynamics Simulation modeling Strategy analysis Lake Eutrophication 



Wallace Institute was appreciated for its editorial assistance. This study was supported by Water Resources Agency, Ministry of Economic Affairs, Taiwan, R. O. C. The authors would like to thank Prof. HJ Lin, Dr. HC Su, Dr. CC Yang, CC Ho, anonymous reviewers and helpers.


  1. 1.
    Ahmad, S., & Simonovic, S. P. (2000). System dynamics modeling of reservoir operations for flood management. Journal of Computing in Civil Engineering, 14(3), 190–198. doi: 10.1061/(ASCE)0887-3801(2000)14:3(190).CrossRefGoogle Scholar
  2. 2.
    Basha, H. A. (1995). Routing equations for detention reservoirs. Journal of Hydraulic Engineering, 121(12), 855–887. doi: 10.1061/(ASCE)0733-9429(1995)121:12(885).CrossRefGoogle Scholar
  3. 3.
    Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.Google Scholar
  4. 4.
    Filippelli, G. M. (2008). The global phosphorus cycle: Past, present, and future. Elements, 4(2), 89–95. doi: 10.2113/GSELEMENTS.4.2.89.CrossRefGoogle Scholar
  5. 5.
    Güneralp, B., & Barlas, Y. (2003). Dynamic modelling of a shallow freshwater lake for ecological and economic sustainability. Ecological Modelling, 167(1–2), 115–138. doi: 10.1016/S0304-3800(03)00172-8.CrossRefGoogle Scholar
  6. 6.
    Guo, H. C., Liu, L., & Huang, G. H. (2001). A system dynamics approach for regional environmental planning and management: A study for Lake Erhai Basin. Journal of Environmental Management, 61(1), 93–111. doi: 10.1006/jema.2000.0400.CrossRefGoogle Scholar
  7. 7.
    Ho, C.-C., Yang, C.-C., Chang, L.-C., & Chen, T.-W. (2005). The application of system dynamics modeling to study impact of water resources planning and management in Taiwan. The 23rd International Conference of The System Dynamics Society, Boston, 17–21 July.Google Scholar
  8. 8.
    Hydrologic Engineering Center. (1966). Reservoir yield, generalized computer program 23-J2-L245. Davis, CA: US Army Corps of Engineers.Google Scholar
  9. 9.
    Hydrologic Engineering Center. (1975). Hydrologic engineering methods for water resources development, vol. 8, reservoir yield. Davis, CA: US Army Corps of Engineers.Google Scholar
  10. 10.
    Janssen, M. A. (2001). An exploratory integrated model to assess management of lake eutrophication. Ecological Modelling, 140(1–2), 111–124. doi: 10.1016/S0304-3800(01)00260-5.CrossRefGoogle Scholar
  11. 11.
    Jørgensen, S. E. (1994). Fundamentals of ecological modelling. New York: Elsevier Science.Google Scholar
  12. 12.
    Matsui, S., Ide, S., & Ando, M. (1995). Lakes and reservoirs: Reflecting waters of sustainable use. Water Science and Technology, 32(7), 221–224. doi: 10.1016/0273-1223(96)00068-6.CrossRefGoogle Scholar
  13. 13.
    Mays, L. W., & Tung, Y. K. (1992). Hydrosystems engineering and management. New York: McGraw-Hill.Google Scholar
  14. 14.
    Nandalal K. D. W., & Simonovic S. P. (2003). Resolving conflicts in water sharing: A systemic approach. Water Resources Research, 39(12), No.1362.Google Scholar
  15. 15.
    Organisation for Economic Co-operation and Development (OECD). (1982). Eutrophication of waters. OECD report, Paris, p. 154.Google Scholar
  16. 16.
    Rallison, R. K. (1980). Origin and evolution of the SCS runoff equation. Proceedings of Symposium on Watershed Management, Boise, ID, 21–23 July. New York, NY: American Society of Civil Engineers, pp. 912–924.Google Scholar
  17. 17.
    Patrick, C. K. (2003). Ecological engineering—Principles and practice. Boca Raton, FL: Lewis.Google Scholar
  18. 18.
    Philbrick, C. R., & Kitanidis, P. K. (1998). Optimal conjunctive-use operations and plans. Water Resources Research, 34, 1307–1316. doi: 10.1029/98WR00258.CrossRefGoogle Scholar
  19. 19.
    Ryan, S. A., Roff, J. C., & Yeats, P. A. (2008). Development and application of seasonal indices of coastal-zone eutrophication. ICES Journal of Marine Science, 65(8), 1469–1474. doi: 10.1093/icesjms/fsn121.CrossRefGoogle Scholar
  20. 20.
    Scher, O., & Thiery, A. (2005). Odonata, amphibia and environmental characteristics in motorway stormwater retention ponds (Southern France). Hydrobiologia, 551, 237–251.CrossRefGoogle Scholar
  21. 21.
    Sehlke, G., & Jacobson, J. (2005). System dynamics modeling of transboundary systems: The Bear River basin model. Ground Water, 43(5), 722–730. doi: 10.1111/j.1745-6584.2005.00065.x.CrossRefGoogle Scholar
  22. 22.
    Shutes, R. B. E. (2001). Artificial wetland and water quality improvement. Environment International, 26(5–6), 441–447. doi: 10.1016/S0160-4120(01)00025-3.CrossRefGoogle Scholar
  23. 23.
    Shutes, R. E., Revitt, D. M., Scholes, L. N. L., Forshaw, M., & Winter, B. (2001). An experimental constructed wetland system for the treatment of highway runoff in the UK. Water Science and Technology, 44(11–12), 571–578.Google Scholar
  24. 24.
    Simonovic, S. P., & Fahmy, H. (1999). A new modeling approach for water resources policy analysis. Water Resources Research, 35(1), 295–304. doi: 10.1029/1998WR900023.CrossRefGoogle Scholar
  25. 25.
    Simonovic, S. P., & Li, L. (2003). Methodology for assessment of climate change impacts on large flood protection system. Journal of Water Resources Planning and Management, 129(5), 361–371. doi: 10.1061/(ASCE)0733-9496(2003)129:5(361).CrossRefGoogle Scholar
  26. 26.
    Sollie, S., Janse, J. H., Mooij, W. M., et al. (2008). The contribution of marsh zones to water quality in Dutch shallow lakes: A modeling study. Environmental Management, 42(6), 1002–1016. doi: 10.1007/s00267-008-9121-7.CrossRefGoogle Scholar
  27. 27.
    Stave, K. A. (2003). A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. Journal of Environmental Management, 67(4), 303–313. doi: 10.1016/S0301-4797(02)00205-0.CrossRefGoogle Scholar
  28. 28.
    Stefan, H. G., Hondzo, M., Eaton, J. G., & Mccormick, J. H. (1995). Validation of a fish habitat model for lakes. Ecological Modelling, 82(3), 211. doi: 10.1016/0304-3800(94)00099-4.CrossRefGoogle Scholar
  29. 29.
    Weller, C. M., Watzin, M. C., & Wang, D. (1996). Role of wetlands in reducing phosphorus loading to surface water in eight watersheds in the lake Champlain basin. Environmental Management, 20(5), 731–739. doi: 10.1007/BF01204144.CrossRefGoogle Scholar
  30. 30.
    Wynn, T. M., & Liehr, S. K. (2001). Development of a constructed subsurface-flow wetland simulation model. Ecological Engineering, 16, 519–536. doi: 10.1016/S0925-8574(00)00115-4.CrossRefGoogle Scholar
  31. 31.
    Xu, F. L., Tao, S., Dawson, R. W., Li, P. G., & Cao, J. (2001). Lake ecosystem health assessment: Indicators and methods. Water Research, 35(13), 3157–3167. doi: 10.1016/S0043-1354(01) 00040-9.CrossRefGoogle Scholar
  32. 32.
    Xu, Z. X., Takeuchi, K., Ishidaira, H., et al. (2002). Sustainability analysis for Yellow River water resources using the system dynamics approach. Water Resources Management, 16(3), 239–261. doi: 10.1023/A:1020206826669.CrossRefGoogle Scholar
  33. 33.
    Yang, C. C., Chang, L. C., Yeh, C. H., & Ho, C. C. (2008). Application of system dynamics with impact analysis to solve the problem of water shortages in Taiwan. Water Resources Management, 22, 1561–1577.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hone-Jay Chu
    • 1
    Email author
  • Liang-Cheng Chang
    • 2
  • Yu-Pin Lin
    • 1
  • Yung-Chieh Wang
    • 1
  • Yu-Wen Chen
    • 2
  1. 1.Bioenvironmental Systems Engineering DepartmentNational Taiwan UniversityTaipei CityTaiwan
  2. 2.Department of Civil EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations