Environmental Modeling & Assessment

, Volume 14, Issue 1, pp 29–45 | Cite as

Mechanistic Virtual Modeling: Coupling a Plant Simulation Model with a Three-dimensional Plant Architecture Component

  • Eric JallasEmail author
  • Ron Sequeira
  • Pierre Martin
  • Sam Turner
  • Petraq Papajorgji


The aim of this research is to integrate plant architectural modeling or “visualization modeling” and “mechanistic” or physiologically based modeling to describe how a real plant functions using a virtual crop. Virtual crops are life-like computer representations of crops based on individual plants and including the representation of the substrate on which the plants grow. The integration of a three-dimensional expression and the mechanistic model of plant development and growth requires the knowledge of the position of the organs along the different plant axes (the topology), their sizes, their forms, and their spatial orientation. The plant simulation model simulates the topology and organ weight or length. The superposition of spatial position and the topology produces the architecture of the plant. The association between sizes and organs creates what we refer to as the plant morphological model. Both components, the architectural model and the morphology model, are detailed in this paper. Once the integration is complete, the system produces a movie-like animation that shows the plant growing. The integrated model may simulate one or several plants growing simultaneously (in parallel). Visual capabilities make the proposed system very unique as it allows users to judge the results of the simulation the same way a farmer judges the situation of the crops in real life, by visually observing the field.


Crop modeling Virtual simulation Cotton Virtual plant 


  1. 1.
    Acock, B., Reddy, V. R., Hodges, H. F., Backer, D. N., & McKinion, J. M. (1985). Photosynthetic response of soybean canopies to full-season carbon dioxide enrichment. Agronomy Journal 77, 942–947.Google Scholar
  2. 2.
    Baker, D. N., Hesketh, J. D., et al. (1972). Simulation of growth and yield in cotton: I. Gross photosynthesis, respiration, and growth. Crop Science, 12, 431–435.Google Scholar
  3. 3.
    Baker, D. N., & Landivar, J. A. (1990). The simulation of plant development in GOSSYM. In T. Hodges (Ed.), Predicting crop phenology (pp. 153–170). Boca Raton, FL: CRC.Google Scholar
  4. 4.
    Baker, D., McKinion, J. M., et al. (1983). GOSSYM: A simulator of cotton crop growth and yield. South Carolina Agricultural Experiment Station Bulletin, 1089, 134.Google Scholar
  5. 5.
    Beer, F. P., & Johnson, E. R. J. (1981). Mechanics of materials. New York: McGraw-Hill.Google Scholar
  6. 6.
    Ben Porath, A. (1985). Effect of taproot restriction on growth and development of cotton grown under drip irrigation. Agronomy, Mississippi State, Mississippi State University, pp. 224.Google Scholar
  7. 7.
    Bouman, B. A. M., van Keulen, H., et al. (1996). The ‘School of de Wit’ crop growth simulation models: A pedigree and historical overview. Agricultural Systems, 52(2/3), 171–198. doi: 10.1016/0308-521X(96)00011-X.CrossRefGoogle Scholar
  8. 8.
    Bruce, R. R., & Römkens, M. J. M. (1965). Fruiting and growth characteristics of cotton in relation to soil moisture tension. Agronomy Journal, 57, 135–140.Google Scholar
  9. 9.
    Cox, P. G. (1996). Some issues in the design of agricultural decision support systems. Agricultural Systems, 52(2/3), 355–381. doi: 10.1016/0308-521X(96)00063-7.CrossRefGoogle Scholar
  10. 10.
    de Reffye, P. (1976). Modélisation et simulation de de la verse du caféier, à l'aide de la théorie de la résistance des matériaux. Cafe, Cacao, The, XX(4), 251–271.Google Scholar
  11. 11.
    de Reffye, P. (1979). Modélisation de l'architecture des arbres par des processus stochastistiques. Simulation spatiale des modèles tropicaux sous l'effet de la pesanteur. Application au coffea robusta. Orsay, France: Paris-Sud. p. 195.Google Scholar
  12. 12.
    de Reffye, P. (1983). Modèle mathématique aléatoire et simulation de la croissance et de l’architecture de caféier Robusta. 4eme partie. Programmation sur micro-ordinateur du tracé en trois dimensions de l’architecture d'un arbre. Application au caféier. Cafe, Cacao, The, XXVII(1), 3–20.Google Scholar
  13. 13.
    de Reffye, P., Blaise, F., et al. (1993). Modélisation et simulation de l’architecture et de la croissance des plantes. Revue. Palais de la Decouverte (Paris, France), 209, 23–48.Google Scholar
  14. 14.
    de Reffye, P., & Duceau, P.(1977). Amélioration de la résistance à la verse du caféier à l'aide de la théorie de la résistance des matériaux. In 8ème Colloque Scientifique International sur le Café, Abidjan, ASIC.Google Scholar
  15. 15.
    de Reffye, P., Edelin, C., et al. (1988). Plant models faithful to botanical structure and development. Computers & Graphics, 22(4), 151–158. doi: 10.1145/378456.378505.CrossRefGoogle Scholar
  16. 16.
    de Wit, C. T., & Brouwer, R.(1968). Über ein dynamisches Modell des vegetativen Wachstums von Pflanzenbeständen. Vereinigung für Angewandte Botanik (Personal document).Google Scholar
  17. 17.
    Duncan, W. G., Loomis, R. S., et al. (1967). A model for simulating photosynthesis in plant communities. Hilgardia. The Journal of Agricultural Science, 38, 181–205.Google Scholar
  18. 18.
    Egli, D. B. (1991). W.G. Duncan – father of crop models. Journal of Agronomic Education, 20(2), 167–167 Fall.Google Scholar
  19. 19.
    Fisher, J. B., & Honda, H. (1979). Branch geometry and effective leaf area: A study of terminalia branching pattern. I. Theoretical Trees. American Journal of Botany, 66, 633–644. doi: 10.2307/2442408.CrossRefGoogle Scholar
  20. 20.
    Fosner, R. (1997). OpenGL. Programming for Windows 95 and Windows NT. Redwood City, CA: Addison-Wesley.Google Scholar
  21. 21.
    Guinn, G. (1985). Fruiting of cotton. III. Nutritional stress and cutout. Crop Science, 25, 981–985.Google Scholar
  22. 22.
    Hesketh, J. D., Baker, D. N., et al. (1972). Simulation of growth and yield in cotton. II. Environmental control of morphogenesis. Crop Science, 12, 436–439.Google Scholar
  23. 23.
    Jallas, E. (1991). Modélisation de Développement et de la Croissance du Cotonnier. Mémoire de DEA en Agronomie. Paris: INA-PG, pp. 101.Google Scholar
  24. 24.
    Jallas, E. (1998). Improved model-based decision support by modeling cotton variability and using evolutionary algorithms. PhD dissertation in Biological Engineering, Mississippi State, Mississippi State University, pp. 239.Google Scholar
  25. 25.
    Kharche, S. D. (1984). Validation of GOSSYM: Effects of irrigation, leaf shape and plant population on canopy light interception, growth and yield of cotton. PhD dissertation in Agronomy, Mississippi State, Mississippi State University, pp. 173.Google Scholar
  26. 26.
    Lindenmayer, A. (1968). Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology, 18, 280–315. doi: 10.1016/0022-5193(68)90079-9.CrossRefGoogle Scholar
  27. 27.
    Marani, A., Baker, D. N., et al. (1985). Effect of water stress on canopy senescence and carbone exchange rates in cotton. Crop Science, 25, 798–802 September–October.Google Scholar
  28. 28.
    Papajorgji, P., & Pardalos, P. (2005). Software engineering techniques applied to agricultural systems an object-oriented and UML approach. New York: Springer.Google Scholar
  29. 29.
    Phene, C. J., Baker, D. N., et al. (1978). SPAR. A soil-plant–atmosphere-research system. Transactions of the ASAE, 21, 924–930.Google Scholar
  30. 30.
    Philipeau, G. (1995). Théorie des Plans d’Expérince. ITCF, Paris France.Google Scholar
  31. 31.
    Prusinkiewicz, P., & Hammel, M. (1994). Visual models of morphogenesis.
  32. 32.
    Reddy, K. R., Reddy, V. R., & Hodges, H. F. (1992). Temperature effects on early season cotton growth and development. Agronomy Journal, 84, 229–237.Google Scholar
  33. 33.
    Reddy, K. R., Hodges, H. F., & McKinion, J. M. (1993). Temperature effects on pima cotton leaf growth. Agronomy Journal, 85, 681–686.Google Scholar
  34. 34.
    Room, P. M., Hanan, J. S., et al. (1996). Virtual plants: New perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science, 1(1), 33–38. doi: 10.1016/S1360-1385(96)80021-5.CrossRefGoogle Scholar
  35. 35.
    Room, P. M., Maillette, L., et al. (1994). Module and metamer dynamics and virtual plants. Advances in Ecological Research, 25, 105–157. doi: 10.1016/S0065-2504(08)60214-7.CrossRefGoogle Scholar
  36. 36.
    Saugier, B., & Garcia de Cortazar, V. (1987). Modélisation de la croissance d’une culture, relation potentielle avec la sélection. Le sélectionneur Français, 39, 7–18.Google Scholar
  37. 37.
    Sequeira, R. A., Olson, R. L., et al. (1996). An intelligent, interactive data input system for a cotton simulation system. AI Application, 10(1), 41–56.Google Scholar
  38. 38.
    Sinko, J. W., & Streifer, W. (1967). A new model for age-size structure of a population. Ecology, 48(6), 910–918. doi: 10.2307/1934533.CrossRefGoogle Scholar
  39. 39.
    Thanisawanyangkura, S., Sinoquet, H., et al. (1997). Leaf orientation and sunlit area distribution in cotton. Agricultural and Forest Meteorology, 86, 1–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Eric Jallas
    • 1
    • 2
    Email author
  • Ron Sequeira
    • 4
  • Pierre Martin
    • 1
  • Sam Turner
    • 3
  • Petraq Papajorgji
    • 5
  1. 1.CIRADMontpellierFrance
  2. 2.ITKMontpellierFrance
  3. 3.StarkvilleUSA
  5. 5.IFAS, Information Technologies OfficeUniversity of FloridaGainesvilleUSA

Personalised recommendations