Environmental Modeling & Assessment

, Volume 14, Issue 2, pp 135–148 | Cite as

CO2 Capture and Storage with Leakage in an Energy-Climate Model

Article

Abstract

Geological CO2 capture and storage (CCS) is among the main near-term contenders for addressing the problem of global climate change. Even in a baseline scenario, with no comprehensive international climate policy, a moderate level of CCS technology is expected to be deployed, given the economic benefits associated with enhanced oil and gas recovery. With stringent climate change control, CCS technologies will probably be installed on an industrial scale. Geologically stored CO2, however, may leak back to the atmosphere, which could render CCS ineffective as climate change reduction option. This article presents a long-term energy scenario study for Europe, in which we assess the significance for climate policy making of leakage of CO2 artificially stored in underground geological formations. A detailed sensitivity analysis is performed for the CO2 leakage rate with the bottom-up energy systems model MARKAL, enriched for this purpose with a large set of CO2 capture technologies (in the power sector, industry, and for the production of hydrogen) and storage options (among which enhanced oil and gas recovery, enhanced coal bed methane recovery, depleted fossil fuel fields, and aquifers). Through a series of model runs, we confirm that a leakage rate of 0.1%/year seems acceptable for CCS to constitute a meaningful climate change mitigation option, whereas one of 1%/year is not. CCS is essentially no option to achieve CO2 emission reductions when the leakage rate is as high as 1%/year, so more reductions need to be achieved through the use of renewables or nuclear power, or in sectors like industry and transport. We calculate that under strict climate control policy, the cumulative captured and geologically stored CO2 by 2100 in the electricity sector, when the leakage rate is 0.1%/year, amounts to about 45,000 MtCO2. Only a little over 10,000 MtCO2 cumulative power-generation-related emissions are captured and stored underground by the end of the century when the leakage rate is 1%/year. Overall marginal CO2 abatement costs increase from a few €/tCO2 today to well over 150 €/tCO2 in 2100, under an atmospheric CO2 concentration constraint of 550 ppmv. Carbon costs in 2100 turn out to be about 40 €/tCO2 higher when the annual leakage rate is 1%/year in comparison to when there is no CO2 leakage. Irrespective of whether CCS deployment is affected by gradual CO2 seepage, the annual welfare loss in Europe induced by the implementation of policies preventing “dangerous anthropogenic interference with the climate system” (under our assumption, implying a climate stabilisation target of 550 ppmv CO2 concentration) remains below 0.5% of GDP during the entire century.

Keywords

Carbon dioxide Climate change CCS Geological leakage Bottom-up model 

References

  1. 1.
    Anderson, S., & Newell, R. (2004). Prospects for carbon capture and storage technologies. Annual Review of the Environment and Resources, 29, 109–142.CrossRefGoogle Scholar
  2. 2.
    Bruggink, J. J. C., & van der Zwaan, B. C. C. (2002). The role of nuclear energy in establishing sustainable energy paths. International Journal of Global Energy Issues, 18, 2/3/4.Google Scholar
  3. 3.
    Deffeyes, K. S. (2005). Beyond oil: the view from Hubbert’s peak. Farrar, Straus & Giroux.Google Scholar
  4. 4.
    ETSAP (2006). Introduction and overview of the MARKAL Model, Energy Technology Systems Analysis Programme, downloadable from: www.etsap.org.
  5. 5.
    ExternE (1998). Externalities of Energy project, vol.7–10, European Commission, Directorate-General XII, Science Research and Development, results available at http://externe.jrc.es/publica.html.
  6. 6.
    Gerlagh, R., & van der Zwaan, B. C. C. (2003). Gross world product and consumption in a global warming model with endogenous technological change. Resource and Energy Economics, 25, 35–57.CrossRefGoogle Scholar
  7. 7.
    Gerlagh, R., & van der Zwaan, B. C. C. (2006). Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Capture or Renewables, Taxes or Subsidies? The Energy Journal, 27, 3.Google Scholar
  8. 8.
    Ha-Duong, M., & Keith, D. W. (2003). Carbon storage: The economic efficiency of storing CO2 in leaky reservoirs. Clean Technologies and Environmental Policy, 5, 181–189.CrossRefGoogle Scholar
  9. 9.
    Hendriks, C. A. (1994). Carbon dioxide removal from coal-fired power plants. PhD Thesis, Utrecht University, Department of Science, Technology and Society, Utrecht, The Netherlands.Google Scholar
  10. 10.
    Hepple, R. P., & Benson, S. M. (2002). Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy. In Y. Kaya, K. Ohyama, J. Gale, & Y. Suzuki (Eds.), GHGT-6: Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 30 September–4 October.Google Scholar
  11. 11.
    Herzog, H., Eliasson, B., & Kaarstad, O. (2000). Capturing greenhouse gases. Scientific American, 282, 2.CrossRefGoogle Scholar
  12. 12.
    Holloway, M. (2000). Scientific American, 80–87, July.Google Scholar
  13. 13.
    House, K. Z., Schrag, D. P., Harvey, C. F., & Lackner, K. S. (2006). Permanent carbon dioxide storage in deep-sea sediments. Proceedings of the National Academy of Sciences, August.Google Scholar
  14. 14.
    IEA (2004). Prospects for CO 2 Capture and Storage, International Energy Agency, Paris, France.Google Scholar
  15. 15.
    IPCC, Intergovernmental Panel on Climate Change (1996). Technical Summary, in 7 Climate Change 1995. In J. T. Houghton et al. (Eds.), Cambridge: Cambridge University Press.Google Scholar
  16. 16.
    IPCC (2001). Intergovernmental Panel on Climate Change, Working Group III, Third Assessment Report, Cambridge: Cambridge University Press.Google Scholar
  17. 17.
    IPCC, Intergovernmental Panel on Climate Change, Working Group III, Special Report on Carbon Dioxide Capture and Storage, Cambridge: Cambridge University Press, 2005.Google Scholar
  18. 18.
    Keller, K., Yang, Z., Hall, M., & Bradford, D. F. (2003). Carbon dioxide sequestration: When and how much? CEPS working paper 94, Princeton University.Google Scholar
  19. 19.
    Kharaka, Y. K., Cole, D. R., Hovorka, S. D., Gunter, W. D., Knauss, K. G., & Freifeld, B. M. (2006). Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins”. Geology, 34, 7.CrossRefGoogle Scholar
  20. 20.
    Loulou, R., & Lavigne, D. (1996). MARKAL Model with Elastic Demands: Application to Greenhouse Gas Emission Control. In C. Carraro & A. Haurie (Eds.), Operations research and environmental management. Dordrecht: Kluwer.Google Scholar
  21. 21.
    Martinus, G., Smekens, K., & van der Zwaan, B. C. C. (2006). MARKAL at ECN – a concise model description. mimeo.Google Scholar
  22. 22.
    McFarland, J. R., Reilly, J., & Herzog, H. J. (2002). Representing Energy Technologies in Top-down Economic Models using Bottom-up Information, MIT Joint Program on the Science an Policy of Global Change, Report No. 89, October.Google Scholar
  23. 23.
    Nakicenovic, N., et al. (2000). Special Report on Emissions Scenarios (SRES), IPCC, Working Group III, Cambridge: Cambridge University Press.Google Scholar
  24. 24.
    NITG (2006). Netherlands Institute of Applied Geoscience, TNO, www.nitg.tno.nl /eng /projects /6_stor /index.shtml.
  25. 25.
    Nordhaus, W. D. (1994). Managing the global commons. Cambridge, MA: MIT Press.Google Scholar
  26. 26.
    Pacala, S. W. (2002). Global constraints on reservoir leakage. In Y. Kaya, K. Ohyama, J. Gale, & Y. Suzuki (Eds.), GHGT-6: Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 30 September–4 October.Google Scholar
  27. 27.
    Parson, E. A., & Keith, D. W. (1998). Fossil Fuels Without CO2 Emissions. Science, 282, 1053.CrossRefGoogle Scholar
  28. 28.
    Riahi, K., Rubin, E. S., Taylor, M. R., Schrattenholzer, L., & Hounshell, D. A. (2004). Technological learning for carbon capture and sequestration technologies. Energy Economics, 26(4), 539–564.CrossRefGoogle Scholar
  29. 29.
    Riemer, P., Eliasson, B., & Wokaun, A. (Eds.) (1999). Greenhouse gas control technologies. Amsterdam: Elsevier.Google Scholar
  30. 30.
    Rubin, E. S., Taylor, M. R., Yeh, S., & Hounshell, D. A. (2004). Learning curves for environmental technologies and their importance for climate policy analysis. Energy, 29, 1551–1559.CrossRefGoogle Scholar
  31. 31.
    Smekens, K. (2004). Response from a MARKAL technology model to the EMF scenario assumptions. Energy Economics, 26, 655–674.CrossRefGoogle Scholar
  32. 32.
    Smekens, K., & van der Zwaan, B. C. C. (2006). Atmospheric and geological CO2 damage costs in energy scenarios. Environmental Science and Policy, 9, 217–227.CrossRefGoogle Scholar
  33. 33.
    Stephens, J. C., & van der Zwaan, B. C. C. (2005). The case for carbon capture and storage. Issues in Science and Technology, Fall, 69–76.Google Scholar
  34. 34.
    UNDP (United Nations Development Program) (2000). United Nations Department of Economic and Social Affairs, World Energy Council, World Energy Assessment: Energy and the Challenge of Sustainability, and chapter 8 therein: R.H. Williams, New York: Advanced Energy Supply Technologies.Google Scholar
  35. 35.
    UNFCCC (United Nations Framework Convention on Climate Change) (1992). May, www.unfccc.de.
  36. 36.
    van der Zwaan, B. C. C. (2005). Will coal depart or dominate global power production during the 21st century? Climate Policy, 5, 4.Google Scholar
  37. 37.
    van der Zwaan, B. C. C., Gerlagh, R., Klaassen, G., & Schrattenholzer, L. (2002). Endogenous technological change in climate change modelling. Energy Economics, 24, 1.CrossRefGoogle Scholar
  38. 38.
    Williams, R. H. (1998). Fuel decarbonization for fuel cell applications and sequestration of the separated CO2. In R. U. Ayres (Ed.), Ecorestructuring. Tokyo: UN University Press, EN-98-04.Google Scholar
  39. 39.
    Wilson, E. J., Johnson, T. L., & Keith, D. W. (2003). Regulating the ultimate sink: Managing the risks of geologic CO2 storage. Environmental Science and Technology, 37, 16.CrossRefGoogle Scholar
  40. 40.
    Yamashita, K., & Barreto, L. (2003). Integrated energy systems for the 21st Century: Coal gasification for co-producing hydrogen, electricity and liquid fuels. IIASA, IR-03-039.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Policy Studies DepartmentEnergy research Centre of the Netherlands (ECN)Amsterdam/PettenThe Netherlands
  2. 2.The Earth Institute, Lenfest Center for Sustainable EnergyColumbia UniversityNew YorkUSA

Personalised recommendations