Environmental Modeling & Assessment

, Volume 13, Issue 3, pp 369–381 | Cite as

Flow and Pollutant Dispersion in Street Canyons using FLUENT and ADMS-Urban

  • S. Di Sabatino
  • R. Buccolieri
  • B. Pulvirenti
  • R. E. Britter
Article

Abstract

This paper is devoted to the study of flow within a small building arrangement and pollutant dispersion in street canyons starting from the simplest case of dispersion from a simple traffic source. Flow results from the commercial computational fluid dynamics (CFD) code FLUENT are validated against wind tunnel data (CEDVAL). Dispersion results from FLUENT are analysed using the well-validated atmos pheric dispersion model ADMS-Urban. The k − ε turbulence model and the advection-diffusion (AD) method are used for the CFD simulations. Sensitivity of dispersion results to wind direction within street canyons of aspect ratio equal to 1 is investigated. The analysis shows that the CFD model well reproduces the wind tunnel flow measurements and compares adequately with ADMS-Urban dispersion predictions for a simple traffic source by using a slightly modified k − ε model. It is found that a Schmidt number of 0.4 is the most appropriate number for the simulation of a simple traffic source and in street canyons except for the case when the wind direction is perpendicular to the street canyon axis. For this last case a Schmidt number equal to 0.04 gives the best agreement with ADMS-Urban. Overall the modified k − ε turbulence model may be accurate for the simulation of pollutant dispersion in street canyons provided that an appropriate choice for coefficients in the turbulence model and the Schmidt number in the diffusion model are made.

Keywords

Street canyons Dispersion Modelling FLUENT ADMS-Urban 

References

  1. 1.
    Barth, T. J., & Jespersen, D. (1989). The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366. AIAA 27th Aerospace Sciences Meeting, Reno, Nevada.Google Scholar
  2. 2.
    Berkowicz, R., Ketzel, M., Vachon, G., Louka, P., Rosant, J.-M., Mestayer, P. G., et al. (2002). Examination of traffic pollution distribution in a street canyon using the Nantes ′99 experimental data and comparison with model results. Water, Air & Soil Pollution. Focus, 2(5), 311–324.CrossRefGoogle Scholar
  3. 3.
    Carruthers, D., Blair, J., & Johnson, K. (2003). Comparison of ADMS-Urban, NETCEN and ERG air quality predictions for london. CERC report (FM489/R7/03). Available from Cambridge Environmental Research Consultants, 3 Kings Parade,Cambridge, CB2 1SJ, UK.Google Scholar
  4. 4.
    Carruthers, D. J., Edmunds, H. A., Lester, A. E., McHugh, C. A., & Singles, R. J. (2000). Use and validation of adms-urban in contrasting urban and industrial locations. International Journal of Environment and Pollution, 14, 1–6.Google Scholar
  5. 5.
    Carruthers, D. J., Holroyd, R. J., Hunt, J. C. R., Weng, W.-S., Robins, A. G., Apsley, D. D., et al. (1994). UK-ADMS: A new approach to modelling dispersion in the Earth’s atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 52, 139–153.CrossRefGoogle Scholar
  6. 6.
    CEDVAL dataset (2002). Category B1-4 (flow across an intersection). http://www.mi.uni-hamburg.de/cedval.
  7. 7.
    DeCroix, D., & Brown, M. (2002). Report on CFD model evaluation using URBAN 2000 field experiment data. Technical report. IOP 10, LA-UR-02-4755. Available from Los Alamos National Laboratory.Google Scholar
  8. 8.
    Di Sabatino, S., Buccolieri, R., Pulvirenti, B., & Britter, R. E. (2005). Flow and pollutant dispersion modelling in street canyons using Fluent and ADMS-Urban. Proc. 5th International Conference on Urban Air Quality. Valencia.Google Scholar
  9. 9.
    Fluent (2005). 6.2 User’s Manual. Retrieved at http://www.fluent.com.
  10. 10.
    Gibson, M. M., & Launder, B. E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 86, 491–511.CrossRefGoogle Scholar
  11. 11.
    Hanna, S. R., Chang, J., Britter, R. E., & Neophytou, M. (2003). Overview of model evaluation history and procedures in the atmospheric air quality area. QNET-CFD Network Newsletter, 2, 26–28.Google Scholar
  12. 12.
    Hanna, S. R., Egan, B. A., Purdum, J., & Wagler, J. (2001). Evaluation of the ADMS, AERMOD and ISC3 models with the Optex, Duke Forest, Kincaid, Indianapolis and Lovett field data sets. International Journal of Environment and Pollution, 16, 1–6.Google Scholar
  13. 13.
    Hertel, O., & Berkowicz, R. (1989). Operational street pollution model (OSPM). Evaluation of model on data from st. olavs street in oslo. DMU Luft, A-135.Google Scholar
  14. 14.
    Launder, B. E. (1989). Second-moment closure: Present... and future? International Journal of Heat Fluid Flow, 10(4), 2829–300.Google Scholar
  15. 15.
    Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289.CrossRefGoogle Scholar
  16. 16.
    Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observation. Journal of Climate, 1, 237–254.CrossRefGoogle Scholar
  17. 17.
    Oliveira, P. J., & Younis, B. A. (2000). On the prediction of turbulent flows around full-scale buildings. Journal of Wind Engineering and Industrial Aerodynamics, 86, 203–220.CrossRefGoogle Scholar
  18. 18.
    Park, S.-K., Kim, S.-D., & Lee, H. (2004). Dispersion characteristics of vehicle emission in an urban street canyon. Science of the Total Envioronment, 323, 263–271.CrossRefGoogle Scholar
  19. 19.
    Ratti, C., Di Sabatino, S., Britter, R. E., Brown, M., Caton, F., & Burian, S. (2002). Analysis of 3-D urban databases with respect to pollution dispersion for a number of European and American cities. Water, Air & Soil Pollution. Focus, 2, 459–469.CrossRefGoogle Scholar
  20. 20.
    Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k − ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 46/47, 145–153.CrossRefGoogle Scholar
  21. 21.
    Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., & Stocker, J. (2004). Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmospheric Environment, 38, 1029–1038.CrossRefGoogle Scholar
  22. 22.
    Roache, P. J. (1998). Verification and validation in computational science and engineering. Albuquerque, New Mexico, USA: Hermosa Publishers.Google Scholar
  23. 23.
    Schlichting, H. (1979). Boundary-layer theory. New York: McGraw-Hill.Google Scholar
  24. 24.
    Vardoulakis, S., & Bernard, E. A. (2003). Modelimg air quality in street canyons: A review. Atmospheric Environment, 37, 155–182.CrossRefGoogle Scholar
  25. 25.
    Xie, X., Huang, Z., & Wang, J. S. (2005). Impact of building configuration on air quality in street canyon. Atmospheric Environment, 39, 4519–4530.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • S. Di Sabatino
    • 1
  • R. Buccolieri
    • 1
  • B. Pulvirenti
    • 2
  • R. E. Britter
    • 3
  1. 1.Dipartimento di Scienza dei MaterialiUniversity of LecceLecceItaly
  2. 2.Dipartimento di Ingegneria Energetica, Nucleare e del Controllo AmbientaleUniversity of BolognaBolognaItaly
  3. 3.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations