Environmental Modeling & Assessment

, Volume 12, Issue 1, pp 63–74 | Cite as

MM5-SMOKE-CMAQ as a modeling tool for 8-h ozone regulatory enforcement: application to the state of Arizona

  • Sang-Mi Lee
  • H. J. S. Fernando
  • S. Grossman-Clarke
Article

Abstract

The Penn State/NCAR Mesoscale Meteorological Model 5 (MM5), Sparse Matrix Operator Kernal Emissions (SMOKE), and Community Multiscale Air Quality (CMAQ) modeling systems were employed to simulate ozone concentration distribution within the State of Arizona, in particular, Phoenix air basin, as supporting information to designate nonattainment areas of the U.S. Environmental Protection Agency's new 8-h ozone standard. In general, based on statistical comparisons between predictions and available (sparsely distributed) observations, the modeling system performed reasonably well for the Phoenix basin, thus proving it to be a useful tool for both regulatory as well as research applications. Detailed inspection, however, revealed a serious problem with respect to the details of the ozone distribution in that for some days the transition from downslope flow to upslope flow in the Phoenix basin was delayed in the model, causing the ozone distribution to show an unrealistic high-ozone bias toward the west valley. Implementation of a modified subgrid parameterization improved the time of transition, and hence the prediction of ozone and its precursor distributions. This study points to possible inadequacies of commonly used subgrid parameterizations in dealing with rapidly changing flow conditions such as morning (and evening) transitions.

Keywords

8-h ozone concentration MM5 CMAQ subgrid turbulence parameterization morning transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, N. S., Boyer, D. L., Brazel, A. J., Brazel, S. W., Chen, R. R., Fernando, H. J. S. et al. (1995). Synoptic classification and physical model experiments to guide field studies in complex terrain. Journal of Applied Meteorology, 34, 719–730.CrossRefGoogle Scholar
  2. 2.
    Brazel, A. J., Fernando, H. J. S., Hunt, J. C. R., Selover, N., & Hedquist, B. (2005). The evening transition and phenomena in Phoenix, Arizona and impacts of surface climate. Journal of Applied Meteorology, 44, 99–112.CrossRefGoogle Scholar
  3. 3.
    Bright, D. R., & Mullen, S. J. (2002). The sensitivity of the numerical simulation of the Southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Weather and Forecasting, 17, 99–114.CrossRefGoogle Scholar
  4. 4.
    Ellis, A. W., Hildebrandt, M. L., & Fernando, H. J. S. (1999). Evidence of lower-atmospheric ozone “Sloshing” in an urbanized valley. Physical Geography, 20, 520–536.Google Scholar
  5. 5.
    Ellis, A. W., Hildebrandt, M. L., Thomas, W. M., & Fernando, H. J. S. (2000). Analysis of the climatic mechanisms contributing to the summertime transport of lower atmospheric ozone across metropolitan Phoenix, Arizona, USA. Climate Research, 15, 13–31.Google Scholar
  6. 6.
    Fast, J. D., Doran, J. C., Shaw, W. J., Coulter, R. L., & Martin, T. J. (2000). The evolution of the boundary layer and its effect on air chemistry in the Phoenix area. Journal of Geophysical Research, 105, 22833–22848.CrossRefGoogle Scholar
  7. 7.
    Hanna, S. R., & Yang, R. (2001). Evaluation of mesoscale models' simulations of near-surface winds, temperature gradients, and mixing depths. Journal of Applied Meteorology, 40, 1095–1104.CrossRefGoogle Scholar
  8. 8.
    Hong, S. Y., & Pan, H. L. (1996). Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124, 2322–2339.CrossRefGoogle Scholar
  9. 9.
    Lee, S. M., & Fernando, H. J. S. (2004). Evaluation of meteorological models, MM5 and HOTMAC, using PAFEX-I data. Journal of Applied Meteorology, 43, 1133–1148.CrossRefGoogle Scholar
  10. 10.
    Lee, S. M., Giori, W., Princevac, M., & Fernando H. J. S. (2006). Implementation of a stable PBL turbulence parameterization for the mesoscale model MM5: Nocturnal flow in complex terrain. Boundary-Layer Meteorology. DOI: 10.1007/s10546-005-9018-4.Google Scholar
  11. 11.
    Monti, P., Fernando, H. J. S., Princevac, M., Chan, W. C., Kowalewski, T. A., & Pardyjak, E. R. (2002). Observations of flow and turbulence in the nocturnal boundary layer over a slope. Journal of the Atmospheric Sciences, 59, 2513–2534.CrossRefGoogle Scholar
  12. 12.
    O'Neill, S. M., & Lamb, B. K. (2005). Intercomparison of the community multiscale air quality model and CALGRID using process analysis. Environmental Science & Technology, 39, 5742–5753.CrossRefGoogle Scholar
  13. 13.
    Otte, T. L., Pouliot, G., Pleim, J. E., Young, J. O., Schere, K. L., Wong, D. C. et al. (2005). Linking the eta model with the community multiscale air quality (CMAQ) modeling system to build a national air quality forecasting system. Weather and Forecasting, 20, 367–384.CrossRefGoogle Scholar
  14. 14.
    Pielke, R. A., & Pearce, R. P. (1994). Mesoscale modeling of the atmosphere. Meteorological Monographs, 25(47), 156.Google Scholar
  15. 15.
    Ricchia, C. (2003). Testimony on behalf of ozone transport commission before the U.S. Environmental Protection Agency on its proposed rule to implement the 8-hour ozone national ambient air quality standard, 6 FR-32, June 7, 2003.Google Scholar
  16. 16.
    Sivacoumar, R., & Thanasekaran, K. (2001). Comparison and performance evaluation of models used for vehicular pollution prediction. Journal of Environmental Engineering, 127, 524–530.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Sang-Mi Lee
    • 1
    • 3
  • H. J. S. Fernando
    • 2
  • S. Grossman-Clarke
    • 2
  1. 1.Environmental Fluid Dynamics Program, Department of Civil and Environmental EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Mechanical & Aerospace Engineering, Environmental Fluid Dynamics ProgramArizona State UniversityTempeUSA
  3. 3.Planning and Technical Support Division, California Air Resources BoardEl MonteUSA

Personalised recommendations