Advertisement

Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model

  • Silvio SchuelerEmail author
  • Katharina Heinke Schlünzen
Original Paper

Abstract

We present the extension and application of the mesoscale atmospheric meteorology model METRAS for dispersion of oak pollen. We incorporated functions for pollen emission, pollen viability and pollen deposition into METRAS and simulated pollen dispersal on a scale of up to 200 km. The basis of the simulations is a real landscape structure that includes topography, land use, and the location and size of oak stands. We simulated the oak pollen dispersion of one single oak stand with an estimated annual pollen production of 1 billion pollen grains/m2 forest surface on two exemplary days of the flowering season in 2000. Depending on the meteorological situation of the simulated days, a pollen cloud with about 10 pollen/m3 may extend up to 30 km from the source. Downstream of the oak stand, approximately 1,000 pollen/m2 deposited up to a distance of 25 km, and lower amounts of pollen deposited up to 100 km away. These values of pollen concentration and deposition lay within the range of published field studies. Overall, it is shown that mesoscale atmospheric models are applicable to simulate pollen dispersal on the landscape level.

Keywords

Quercus robur pollen dispersal pollen emission pollen production gene flow mesoscale model landscape level 

References

  1. 1.
    Aas, K., Aberg, N., Bachert, C., Bergmann, R., Bonini, S., Bousquet, J., et al. (1997). European allergy white paper: Allergic diseases as a public health problem. Brussels: The UCB Institute of Allergy.Google Scholar
  2. 2.
    Andersen, S. T. (1970). The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra, Geological Survey of Denmark, II. Series, No. 96.Google Scholar
  3. 3.
    Austerlitz, F., & Garnier-Géré, P. H. (2003). Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: Interaction of life cycle, pollen flow and seed long-distance dispersal. Heredity, 90, 282–290.CrossRefGoogle Scholar
  4. 4.
    Aylor, D. E. (2002). Settling speed of corn (Zea mays) pollen. Journal of Aerosol Science, 33, 1601–1607.CrossRefGoogle Scholar
  5. 5.
    Chamberlain, A. C. (1975). The movement of particles in plant communities. In J. L. Monteith (Ed.), Vegetation and the atmosphere, Vol. 1 (pp. 155–203). London: Academic Press.Google Scholar
  6. 6.
    Degen, B., Llamas-Gomez, L., & Scholz, F. (1999). Erarbeitung von Entscheidungshilfen für eine nachhaltige Forstwirtschaft zum Schutze der genetischen Vielfalt von Waldbaum- und Waldstraucharten. In F. Scholz & B. Degen (Eds.), Wichtige Einflussfaktoren auf die Biodiversität in Wäldern, BFH-Mitt. No. 195 (pp. 1–139). Hamburg: Max Wiedebusch.Google Scholar
  7. 7.
    Degen, B., Streiff, R., & Ziegenhagen, B. (1999). Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci. Heredity, 83, 597–603.CrossRefGoogle Scholar
  8. 8.
    Dierer, S., Schlünzen, K. H., Birnbaum, G., Brümmer, B., & Müller, G. (2005). Atmosphere-sea ice interactions during a cyclone passage investigated by using model simulations and measurements. Monthly Weather Review, 133, 3678–3692.CrossRefGoogle Scholar
  9. 9.
    DiFazio, S. P., Slavov, G. T., Burczyk, J., Leonardi, S., & Strauss, S. H. (2004). Gene flow from tree plantations and implications for transgenic risk assessment. In C. Walter & M. Carson (Eds.), Plantation forest biotechnology for the 21st century (pp. 405–422). Kerala: Research Signpost 37/661.Google Scholar
  10. 10.
    Dow, B. D., & Ashley, M. V. (1998). High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. Journal of Heredity, 89, 62–70.CrossRefGoogle Scholar
  11. 11.
    Ellstrand, N. C. (1992). Gene flow by pollen: Implication for the plant conservation genetics. Oikos, 63, 77–89.CrossRefGoogle Scholar
  12. 12.
    Fladung, M. (2004). Modellierung des Genflusses für die Risikoabschätzung gentechnisch veränderter Bäume. Working Paper No. 2004/4, Institute for Forest Genetics and Forest Tree Breeding, Federal Research Centre for Forestry and Forest Products, Hamburg.Google Scholar
  13. 13.
    Gerber, S., Mariette, S., Streiff, R., Bodénès, C., & Kremer, A. (2000). Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Molecular Ecology, 9, 1037–1048.CrossRefGoogle Scholar
  14. 14.
    Giddings, G. (2000). Modelling the spread of pollen from Lolium perenne. The implications for the release of wind-pollinated transgenics. Theoretical and Applied Genetics, 100, 971–974.CrossRefGoogle Scholar
  15. 15.
    Giddings, G. D., Sackville Hamilton, N. R., & Hayward, M. D. (1997). The release of genetically modified grasses. Part 2: The influence of wind direction on pollen dispersal. Theoretical and Applied Genetics, 94, 1007–1014.CrossRefGoogle Scholar
  16. 16.
    Goyette-Pernot, J., Muñoz-Alpizar, R., Blanchet, J.-P., Goyette S., & Beniston, M. (2003). Analysing ragweed pollen cloud over Montreal City Center, in: Proceedings of the 5th International Conference on Urban Climate, Lodz.Google Scholar
  17. 17.
    Grosse-Brauckmann, G. (1978). Absolute Pollennieder-schlagsmengen an verschiedenen Beobachtungsorten in der BRD. Flora, 167, 209–247.Google Scholar
  18. 18.
    Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20, 3–19.CrossRefGoogle Scholar
  19. 19.
    Hidalgo, P. J., Mangin, A., Galán, C., Hembise, O., Vázquez, L. M., & Sanchez, O. (2002). An automated system for surveying and forecasting Olea pollen dispersion. Aerobiologia, 18, 23–31.CrossRefGoogle Scholar
  20. 20.
    Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  21. 21.
    Jackson, S. T., & Lyford, M. E. (1999). Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions. Botanical Review, 65, 39–75.CrossRefGoogle Scholar
  22. 22.
    Kawashima, S., & Takahashi, Y. (1995). Modelling and simulation of mesoscale dispersion process for airborne cedar pollen. Grana, 34, 142–150.Google Scholar
  23. 23.
    Kawashima, S., & Takahashi, Y. (1999). An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana, 38, 316–324.CrossRefGoogle Scholar
  24. 24.
    Klein, E. K., Lavigne, C., Foueillassar, X., Gouyon, P. H., & Laredo, C. (2003). Corn pollen dispersal: Quasi-mechanistic models and field experiments. Ecological Monographs, 73, 131–150.CrossRefGoogle Scholar
  25. 25.
    Lahtinen, M.-L., Pulkkinen, P., & Helander, M. L. (1997). Potential gene flow by pollen between English oak (Quercus robur L.) stands in Finland. Forestry Studies, 28, 47–50.Google Scholar
  26. 26.
    Levin, D. A, & Kerster, K. W. (1974). Gene flow in seed plants. Evolutionary Biology, 7, 139–220.Google Scholar
  27. 27.
    Loos, C., Seppelt, R., Meier-Bethke, S., Schiemann, J., & Richter, O. (2003). Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. Journal of Theoretical Biology, 225, 241–255.CrossRefGoogle Scholar
  28. 28.
    Loveless, M. D., & Hamrick, J. L. (1984). Ecological determinants of genetic-structure in plant-populations. Annual Review of Ecology and Systematics, 15, 65–95.CrossRefGoogle Scholar
  29. 29.
    Lüpkes, C., & Schlünzen, K. H. (1996). Modelling the Arctic convective boundary-layer with different turbulence parameterizations. Boundary-Layer Meteorology, 79, 107–130.CrossRefGoogle Scholar
  30. 30.
    Niemeier, U., & Schlünzen, K. H. (1993). Modelling steep terrain influences on flow patterns at the Isle of Helgoland. Beiträge zur Physik der Atmosphäre, 66, 45–62.Google Scholar
  31. 31.
    Norris-Hill, J. (1995). The modelling of daily poaceae concentrations. Grana, 34, 182–188.CrossRefGoogle Scholar
  32. 32.
    Olsson, U. (1975). On the size and microstrucure of pollen grains of Quercus robur and Quercus petraea (Fagaceae). Botaniska Notiser, 128, 256–264.Google Scholar
  33. 33.
    Pietrowicz, J., & Pasken, R. (2002). Testing of mesoscale meteorological models as a tool to forecast pollen concentrations, Workshop paper, 12th PSU/NCAR Mesoscale Modelling System Users' Workshop NCAR.Google Scholar
  34. 34.
    Pohl, F. (1933). Freilandversuche zur Bestäubungsökologie der Stieleiche. Beihefte zum Botanischen Centralblatt, 51, 673–692.Google Scholar
  35. 35.
    Pohl, F. (1936). Die Pollenerzeugung der Windblütler. Beihefte zum Botanischen Centralblatt, 56, 365–470.Google Scholar
  36. 36.
    Rajora, O. P., & Mosseler, A. (2001). Challenges and opportunities for conservation of forest genetic resources. Euphytica, 118, 197–212.CrossRefGoogle Scholar
  37. 37.
    Raynor, G. S., Hayes, J. V., & Ogend, E. C. (1974). Mesoscale transport and dispersion of airborne pollens. Journal of Applied Meteorology, 13, 87–95.CrossRefGoogle Scholar
  38. 38.
    Rempe, H. (1937). Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftströ\mungen. Planta, 27, 93–147.CrossRefGoogle Scholar
  39. 39.
    Schlünzen, K. H. (1990). Numerical studies on the inland penetration of sea breeze fronts at a coastline with tidally flooded mudflats. Beiträge zur Physik der Atmosphäre, 63, 243–256.Google Scholar
  40. 40.
    Schlünzen, K. H. (2002). Simulation of transport and chemical transformations in the atmospheric boundary layer — review on the past 20 years developments in science and practice. Meteorologische Zeitschrift, 11, 303–313.CrossRefGoogle Scholar
  41. 41.
    Schlünzen, K. H., Hinneburg, D., Knoth, O., Lambrecht, M., Leitl, B., López, S. et al. (2003). Flow and transport in the obstacle layer: First results of the micro-scale model MITRAS. Journal of Atmospheric Chemistry, 44, 113–130.CrossRefGoogle Scholar
  42. 42.
    Schlünzen, K. H., & Katzfey, J. J. (2003). Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus, 55A, 232–246.Google Scholar
  43. 43.
    Schlünzen, K. H., & Pahl, S. (1992). Modification of dry deposition in a developing sea-breeze circulation — a numerical case study. Atmospheric Environment, 26, 51–61.Google Scholar
  44. 44.
    Schlünzen, K. H., Stahlschmidt, T., Rebers, A., Niemeier, U., Kriews, M., & Dannecker, W. (1997). Atmospheric input of lead into the German Bight — a high resolution measurement and model case study. Marine Ecology-Program Series, 156, 299–309.CrossRefGoogle Scholar
  45. 45.
    Schueler, S. (2005). Pollen-mediated gene flow of trees in the temperate zone. PhD thesis, Department of Biology, University of Hamburg, Sierke Verlag, Göttingen.Google Scholar
  46. 46.
    Schueler, S., Degen, B., & Scholz, F. (2003). Muster genetischer Diversität in Waldbaumpopulationen-Wirkungen von Forstwirtschaft und Fragmentierung. Nova Acta Leopoldina NF, 87/328, 395–399.Google Scholar
  47. 47.
    Schueler, S., Scholz, F., & Liesebach, H. (2004). Die Bedeutung des Genflusses für die Erhaltung der genetischen Vielfalt von Populationen in fragmentierten Landschaften, Working Paper No. 2004/2, Institute for Forest Genetics and Forest Tree Breeding, Federal Research Centre for Forestry and Forest Products, Hamburg.Google Scholar
  48. 48.
    Schueler, S., Schlünzen, K. H., & Scholz, F. (2005). Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow. Trees, 19, 154–161.Google Scholar
  49. 49.
    Schulz, M., van Beusekom, K., Brockmann, U., Dannecker, W., Gerwig, H., Grassl, H., et al. (1999). The atmospheric impact on fluxes of nitrogen, POPs and energy in the German Bight. Deutsche Hydrographische Zeitschrift, 51, 133–154.CrossRefGoogle Scholar
  50. 50.
    Sehmel, G. A. (1980). Particel and gas dry deposition: A review. Atmospheric Environment, 14, 983–1011.CrossRefGoogle Scholar
  51. 51.
    Sharp, W. M., & Chrisman, H. H. (1961). Flowering and fruiting in the white oaks. I. Staminate flowering through pollen dispersal. Ecology, 42, 365–372.CrossRefGoogle Scholar
  52. 52.
    Sheng, L., Schlünzen, K. H., & Wu, Z. (2000). Three-dimensional numerical simulation of the mesoscale wind structure over Shandong peninsula. Acta Meteorologia Sinica, 1, 97–107.Google Scholar
  53. 53.
    Siljamo, P., Sofiev, M., & Ranta, H. (2004). An approach to simulation of long-range atmospheric transport of natural allergens: An example of birch pollen. In Pre-prints of 27th Int. Technical Meeting on Air Pollution Modelling and its Applications, Banff, (pp. 395–402).Google Scholar
  54. 54.
    Smouse, P. E., Dyer, R. J., Westfall, R. D., & Sork, V. L. (2001). Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution, 55, 260–271.Google Scholar
  55. 55.
    Streiff, R., Ducousso, A., Lexer, C., Steinkellner, H., Gloessl, J., & Kremer, A. (1999). Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Molecular Ecology, 8, 831–841.CrossRefGoogle Scholar
  56. 56.
    Tauber, H. (1974). A static non-overload pollen collector. New Phytologist, 73, 359–369.CrossRefGoogle Scholar
  57. 57.
    Tauber, H. (1977). Investigations of aerial pollen transportation in forested area. Dansk Botanisk Arkiv, 32, 1–121.Google Scholar
  58. 58.
    Thunis, P., Galmarini, S., Martilli, A., Clappier, A., Andronopoulos, S., Bartzis, J., et al. (2003). An inter-comparison exercise of mesoscale flow models applied to an ideal case simulation. Atmospheric Environment, 37, 363–382.CrossRefGoogle Scholar
  59. 59.
    von Salzen, K., Claussen, M., & Schlünzen, K. H. (1996). Application of the concept of blending height to the calculation of surface fluxes in a mesoscale model. Meteorologische Zeitschrift NF, 5, 60–66.Google Scholar
  60. 60.
    von Salzen, K., & Schlünzen, K. H. (1999). Simulation of the dynamics and composition of secondary and marine inorganic aerosols in the coastal atmosphere. Journal of Geophysical Research-Atmosphere, 23, 30201–30217.CrossRefGoogle Scholar
  61. 61.
    Winkler, H., Ostrowski, R., & Wilhelm, M. (2001). Pollenbestimmungsbuch der Stiftung Deutscher Polleninformationsdienst. Paderborn: Takt-Verlag.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Silvio Schueler
    • 1
    • 2
    Email author
  • Katharina Heinke Schlünzen
    • 3
  1. 1.Institute for Forest Genetics and Forest Tree BreedingFederal Research Centre for Forestry and Forest ProductsGrosshansdorfGermany
  2. 2.Department of GeneticsFederal Research and Training Centre for Forests, Natural Hazards and LandscapeViennaAustria
  3. 3.Meteorological Institute, Center for Marine and Climate ResearchUniversity of HamburgHamburgGermany

Personalised recommendations