Environmental Modeling & Assessment

, Volume 11, Issue 4, pp 387–394

Modeling rhizofiltration: heavy-metal uptake by plant roots

  • P. Verma
  • K. V. George
  • H. V. Singh
  • S. K. Singh
  • A. Juwarkar
  • R. N. Singh
Article

The discovery of phytoaccumulation potential of plant species has led to its application for remediation of heavy-metal-contaminated soil and wastewater, which is termed as phytoextraction/rhizofiltration. For prediction, analysis, planning and cost-effective design of such systems, mathematical models not only are used as a screening tool but also provide optimal parameters like harvesting time, irrigation schedule, etc. Several laboratory and field scale studies have been carried out in the past, and mathematical expressions have been developed by various researchers for different phenomena like metal adsorption in soil, plant root growth with time, moisture and metal uptake by plant root, moisture movement in unsaturated zone, soil moisture relationship, etc. The complete design of any such phytoremediation program would require the knowledge of behavior of heavy-metal movement in soil, water and plant root system. In this paper, a model for simulating heavy-metal dynamics in soil, water and plant root system is developed and discussed. The governing non-linear partial differential equation is solved numerically by implicit finite difference method using Picard's iterative technique, and the formulation has been illustrated using a characteristic example. The source code is written in MATLAB.

Keywords

phytoremediation modeling heavy metal plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.S. Boyd, in: Plants that Hyperaccumulate Heavy Metals, ed. R.R. Brooks (CAB International, Willingford, U.K., 1998) pp. 181–201.Google Scholar
  2. 2.
    R.R. Brooks, J. Lee, R.D. Reeves and T. Jaffre, J. Geochem. Explor. 7 (1977) 49–57.CrossRefGoogle Scholar
  3. 3.
    A.J.M. Baker, S.P. McGrath, R.D. Reeves and J.A.C. Smith, in: Phytoremediation of Contaminated Soil and Water, eds. N. Terry and G.S. Banuelos (Lewis, Boca Raton, FL, 1999) pp. 85–107.Google Scholar
  4. 4.
    V. Dushenkov, P.B.A.N. Kumar, H. Motto and I. Raskin, Environ. Sci. Technol. 29 (1995) 1239–1245.CrossRefGoogle Scholar
  5. 5.
    J.L. Schnoor, “Phytoremediation”, Technology Evaluation Report, E Series: TE. 01 (1998), Prepared for Groundwater Remediation Technologies Analysis Center, Pittsburgh, USA, 1997, p. 37.Google Scholar
  6. 6.
    F.J. Molz, I. Remson, A.A. Fungaroli and R.L. Drake, Water Resour. Res. 4 (1968) 1161–1169.Google Scholar
  7. 7.
    D. Hillel, C.G.E.M. van Beek and H. Talpaz, Soil Sci. 120 (1975) 385–399.Google Scholar
  8. 8.
    H.R. Rowse, W.K. Mason and H.M. Taylor, Soil Sci. 130 (1983) 218–224.CrossRefGoogle Scholar
  9. 9.
    F.J. Molz and I. Remson, Water Resour. Res. 6 (1970) 1346–1356.Google Scholar
  10. 10.
    S.R. Singh and A. Kumar, Agric. Eng., ISAE 22(2) (1985) 50–74.Google Scholar
  11. 11.
    M.A. Marino and J.C. Tracy, J. Irrig. Drain. Eng. 114 (1988) 558–604.CrossRefGoogle Scholar
  12. 12.
    P. Verma, K.V. George, H.V. Singh, T.P. Mathew and R.N. Singh, Int. J. Environ. Stud. 61(1) (2004) 39–48.CrossRefGoogle Scholar
  13. 13.
    T.J. Christensen, Water Air Soil Pollut. 26 (1985) 255–264.CrossRefGoogle Scholar
  14. 14.
    T.J. Christensen, Water Air Soil Pollut. 34 (1987) 305–314.CrossRefGoogle Scholar
  15. 15.
    P.H. Nye and F.H.C. Marriott, Plant Soil 30 (1969) 459–472.CrossRefGoogle Scholar
  16. 16.
    N. Classen and S.A. Barber, J. Agron. 68 (1976) 961–964.CrossRefGoogle Scholar
  17. 17.
    E. Hoffland, H.S. Bolemhof, P.A. Leffelaar, G.R. Findenegg and J.A. Nelemans, Plant Soil 124 (1990) 149–155.CrossRefGoogle Scholar
  18. 18.
    L.A. Richards, Physics 1 (1931) 318–333.CrossRefGoogle Scholar
  19. 19.
    M.N. Nimha and R.J. Hanks, Soil Sci. Soc. Am. Proc. 37 (1973) 522–527.CrossRefGoogle Scholar
  20. 20.
    P.A.C. Raats, J. Hydrol. 99 (1975) 297–306.Google Scholar
  21. 21.
    J.C. Hoogland, R.A. Fedes and C. Belmans, Acta Hortic. 119 (1981) 123–131.Google Scholar
  22. 22.
    R.J. Prasad, J. Hydrol. 99 (1988) 297–306.CrossRefGoogle Scholar
  23. 23.
    S. Mathur, Int. J. Numer. Anal. Methods Geomech. 23 (1999) 1349–1357.CrossRefGoogle Scholar
  24. 24.
    F.J. Molz, Water Resour. Res. 17 (1981) 1245–1260.CrossRefGoogle Scholar
  25. 25.
    H. Borg and D.W. Grimes, Trans. ASAE 29(1) (1986) 194–197.Google Scholar
  26. 26.
    M.Th. Van Genuchten and D.R. Nielsen, Ann. Geophys. 3 (1985) 615–628.Google Scholar
  27. 27.
    M.Th. Van Genuchten, Soil Sci. Soc. Am. J. 44 (1980) 892–898.CrossRefGoogle Scholar
  28. 28.
    W.M. Cornelis, J. Ronsyn, M.V. Meirvenne and R. Hartmann, Soil Sci. Am. J. 65 (2001) 638–648.CrossRefGoogle Scholar
  29. 29.
    H. Vereecken, J. Maes, J. Feyen and P. Darius, Soil Sci. 148 (1989) 389–403.CrossRefGoogle Scholar
  30. 30.
    J. Bear, Dynamics of Fluids in Porous Media (American Elsevier Publishing Company, Inc., New York, USA, 1979) p. 482.Google Scholar
  31. 31.
    S. Rao and S. Mathur, J. Irrig. Drain. Eng. 120 (1994) 89–96.CrossRefGoogle Scholar
  32. 32.
    H.F. Wang and M.P. Anderson, Introduction to Groundwater Modeling (W.H. Freeman and Company, San Francisco, USA, 1982) pp. 180–181.Google Scholar
  33. 33.
    J.L. Morel, in: Soil Ecotoxicology, eds. J. Tarradellas, G. Bitton and D. Rossel (CRC Lewis Publishers, New York, USA, 1997) pp. 141–176.Google Scholar
  34. 34.
    R.S. Morrison, R.R. Brooks and R.D. Reeves, Plant Sci. Lett. 17 (1980) 451–457.CrossRefGoogle Scholar
  35. 35.
    G.L. Mullins, L.E. Sommers and S.A. Barber, Soil Sci. Soc. Am. J. 50 (1986) 1245–1250.CrossRefGoogle Scholar
  36. 36.
    F.S. George, Differential Equations with Applications and Historical Notes (McGraw-Hill, New York, 1991) pp. 538–555.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • P. Verma
    • 1
  • K. V. George
    • 1
  • H. V. Singh
    • 1
  • S. K. Singh
    • 1
  • A. Juwarkar
    • 1
  • R. N. Singh
    • 1
  1. 1.National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations