Environmental Modeling & Assessment

, Volume 11, Issue 1, pp 31–43 | Cite as

Oracle-based optimization applied to climate model calibration

  • Cesar BeltranEmail author
  • N. R. Edwards
  • A. B. Haurie
  • J.-P. Vial
  • D. S. Zachary


In this paper, we show how oracle-based optimization can be effectively used for the calibration of an intermediate complexity climate model. In a fully developed example, we estimate the 12 principal parameters of the C-GOLDSTEIN climate model by using an oracle-based optimization tool, Proximal-ACCPM. The oracle is a procedure that finds, for each query point, a value for the goodness-of-fit function and an evaluation of its gradient. The difficulty in the model calibration problem stems from the need to undertake costly calculations for each simulation and also from the fact that the error function used to assess the goodness-of-fit is not convex. The method converges to a ‘best fit’ estimate over 10 times faster than a comparable test using the ensemble Kalman filter. The approach is simple to implement and potentially useful in calibrating computationally demanding models based on temporal integration (simulation), for which functional derivative information is not readily available.


oracle-based optimization cutting plane method model calibration parameter estimation C-GOLDSTEIN Proximal-ACCPM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Oliva, Model calibration as a testing strategy for system dynamics models, Eur. J. Oper. Res. 151 (2002) 552–568.CrossRefGoogle Scholar
  2. 2.
    IPCC, Special report on emissions scenarios, working group III. Technical report, Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, 2000).Google Scholar
  3. 3.
    IPCC, Climate change 2001: the scientific basis, summary for policy-makers and technical summary of the working group I report. Technical report, Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, 2001).Google Scholar
  4. 4.
    G. Evensen, The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn. 53 (2003) 343–367.CrossRefGoogle Scholar
  5. 5.
    O. du Merle and J.-P. Vial, Proximal ACCPM, a cutting plane method for column generation and Lagrangian relaxation: application to the p-median problem. Technical report, Logilab, HEC (University of Geneva, 2002).Google Scholar
  6. 6.
    J.C. Hargreaves, J.D. Annan, N.R. Edwards and R. Marsh, An efficient climate forecasting method using an intermediate complexity earth system model and the ensemble Kalman filter, Clim. Dyn. 23 (2004) 745–760.CrossRefGoogle Scholar
  7. 7.
    C. Gordon, C. Cooper, C.A. Senior, H. Banks, J.M. Gregory, T.C. Johns, J.F.B. Mitchell and R.A. Wood, The simulation of SST, sea-ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn. 16 (2000) 147–168.CrossRefGoogle Scholar
  8. 8.
    H. Goosse, F.M. Selten, R.J. Haarsma and J.D. Opsteegh, Decadal variability in high northern latitudes as simulated by an intermediate-complexity climate model, Ann. Glaciol. 33 (2001) 525–532.CrossRefGoogle Scholar
  9. 9.
    A.J. Weaver, M. Eby, E.C. Wiebe, C.M. Bitz, P.B. Duffy, T.L. Ewen, A.F. Fanning, M.M. Holland, A. MacFadyen, H.D. Matthews, K.J. Meissner, O. Saenko, A. Schmittner, H. Wang and M. Yoshimori, The UVic earth system climate model: model description, climatology, and applications to past, present and future climates, Atmos.–Ocean 39 (2001) 361–428.Google Scholar
  10. 10.
    T.F. Stocker, D.G. Wright and L. A. Mysak, A zonally averaged, coupled ocean–atmosphere model for paleoclimate studies, J. Clim. 5 (1992) 773–797.CrossRefGoogle Scholar
  11. 11.
    E.J. Rohling, R. Marsh, N.C. Wells, M. Siddall and N.R. Edwards, Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets, Nature 430 (2004) 1016–1021.CrossRefPubMedGoogle Scholar
  12. 12.
    L. Drouet, C. Beltran, N.R. Edwards, A.B. Haurie, J.-P. Vial and D.S. Zachary, An oracle method to couple climate and economic dynamics, in: Coupling Climate and Economic Dynamics, eds. A. Haurie and L. Viguier (Kluwer, 2005).Google Scholar
  13. 13.
    R. Marsh, A. Yool, T.M. Lenton, M.Y. Gulamali, N.R. Edwards, J.G. Shepherd, M. Krznaric, S. Newhouse and S.J. Cox, Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model, Clim. Dyn. 23 (2005) 761–777.CrossRefGoogle Scholar
  14. 14.
    N.R. Edwards and R. Marsh, Uncertainties due to transport-parameter sensitivity in an efficient 3-d ocean-climate model, Clim. Dyn 24(4) (2005) 415–433.CrossRefGoogle Scholar
  15. 15.
    G. Welch and G. Bishop, An introduction to the Kalman filter. Technical report, Department of Computer Science, University of North Carolina at Chapel Hill, 2003.Google Scholar
  16. 16.
    G. Evensen, Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. 99(C5) (1994) 10143–10162.CrossRefGoogle Scholar
  17. 17.
    J.L. Anderson, An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev. 129 (2001) 2884–2902.CrossRefGoogle Scholar
  18. 18.
    J. Derber, A variational continuous assimilation scheme, Mon. Weather Rev. 117 (1989) 2437–2446.CrossRefGoogle Scholar
  19. 19.
    D.P. Solomatine, Water industry systems: modelling and optimization applications, volume 2, chapter Random search methods in model calibration and pipe network (Research studies press, Ltd., Baldock, UK, 1999) pp. 317–332.Google Scholar
  20. 20.
    Z. Yang and A. Elgamal, Application of unconstrained optimization and sensitivity analysis to calibration of a soil constitutive model, Int. J. Numer. Anal. Methods Geomech. 27 (2003) 1277–1297.CrossRefGoogle Scholar
  21. 21.
    R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, 3rd edn. (Springer Verlag, Heidelberg, 1996).Google Scholar
  22. 22.
    J.E. Kelley, The cutting-plane method for solving convex programs, J. SIAM 8 (1960) 703–712.Google Scholar
  23. 23.
    J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, Vol. I and II (Springer-Verlag, Berlin, 1996).Google Scholar
  24. 24.
    P.E. Gill, W. Murray and M.H. Wright, Practical Optimization, 10th edn. (Academic Press, London, 1995).Google Scholar
  25. 25.
    Y. Nesterov, Cutting plane algorithms from analytic centers: efficiency estimates, Math. Program., B 69 (1995) 149–176.Google Scholar
  26. 26.
    J.L. Goffin, Z.Q. Luo and Y. Ye, Complexity analysis of an interior cutting plane for convex feasibility problems, SIAM J. Optim. 6 (1996) 638–652.CrossRefGoogle Scholar
  27. 27.
    D.J. Higham and N.J. Higham, MATLAB Guide, (SIAM, Philadelphia, PA, USA, 2000).Google Scholar
  28. 28.
    J.D. Annan, J.C. Hargreaves, N.R. Edwards and R. Marsh, Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter, Ocean Model. 8 (2005) 135–154.CrossRefGoogle Scholar
  29. 29.
    J.D. Annan and J.C. Hargreaves, Efficient parameter estimation for a highly chaotic system, Tellus A, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Cesar Beltran
    • 1
    Email author
  • N. R. Edwards
    • 2
  • A. B. Haurie
    • 1
  • J.-P. Vial
    • 1
  • D. S. Zachary
    • 3
  1. 1.Logilab-HECUniversity of GenevaGenevaSwitzerland
  2. 2.Climate and Environmental PhysicsUniversity of BernBernSwitzerland
  3. 3.Physics DepartmentAmerican University of SharjahSharjahUnited Arab Emirates

Personalised recommendations