Advertisement

Environmental Modeling & Assessment

, Volume 11, Issue 1, pp 1–17 | Cite as

Uncertainty and economic analysis of climate change: A survey of approaches and findings

  • Sonja Peterson
Article

The analysis of climate change is confronted with large uncertainties that need to be taken into account to arrive at meaningful policy recommendations. The main contribution of economics to this interdisciplinary task is to provide formal frameworks and techniques for analyzing climate policy in the context of uncertainty. This paper will give an overview of existing approaches and findings to provide a broad picture of what economics can contribute to the debate.

Keywords

climate change uncertainty survey modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.H. Samstad and L.A. Greening, Economic models for climate policy analysis, Environ. Model. Assess. 3 (1998) 3–18.CrossRefGoogle Scholar
  2. 2.
    G. Heal and B. Kriström, Uncertainty and climate change, Environ. Resour. Econ. 22 (2002) 3–39.CrossRefGoogle Scholar
  3. 3.
    D.L. Kelly and C.D. Kolstad, Integrated assessment models for climate change control, in: International Yearbook of Environmental and Resource Economics 1999/2000: A Survey of Current Issues, eds. H. Folmer and T. Tietenberg (Edward Elgar, Cheltham, UK, 1999) pp. 171–197.Google Scholar
  4. 4.
    A. Kann and J.P. Weyant, Approaches for performing uncertainty analysis in large-scale energy/economic policy models, Environ. Model. Assess. 5 (2000) 29–44.CrossRefGoogle Scholar
  5. 5.
    R. Zapert, P.S. Gaertner and J.A. Filar, Uncertainty propagation within an integrated model of climate change, Energy Econ. 20 (1998) 571–598.CrossRefGoogle Scholar
  6. 6.
    IPCC, Climate Change 2001, Impacts, Adaptation and Vulnerability (Cambridge University Press, New York, USA, 2001).Google Scholar
  7. 7.
    J. Gjerde, S. Grepperud and S. Kverndokk, Optimal climate policy in the possibility of a catastrophe, Resour. Energy Econ. 21 (1999) 289–317.CrossRefGoogle Scholar
  8. 8.
    P. Molander, Optimal Greenhouse Gas Abatement Under Uncertainty (Research Papers in Economics, University of Stockholm, Stockholm, Sweden, 1994).Google Scholar
  9. 9.
    R. Sausen, Kette von Unsicherheiten, in: Protokoll des 2. Nationales IPCC-Arbeitsgespräch: Klimaänderungen: Bewertung von Unsicherheiten als Grundlage für rationales Handeln (Köln-Porz, Germany, 23 September 2003).Google Scholar
  10. 10.
    A. Baranzini, A.M. Chesney and J. Morisset, The impact of possible climate catastrophes on global warming policies, Energy Policy 31 (2003) 691–701.CrossRefGoogle Scholar
  11. 11.
    C. Carraro and J.C. Hourcade, Climate modelling and policy strategies. The role of technical change and uncertainty, Energy Econ. 20 (1998) 463–471.CrossRefGoogle Scholar
  12. 12.
    W. Nordhaus, Managing the Global Commons (MIT Press, Cambridge, 1994).Google Scholar
  13. 13.
    A.C. Fisher and U. Narain, Global warming, endogenous risk, and irreversibility, Environ. Resour. Econ. 25 (2003) 395–416.CrossRefGoogle Scholar
  14. 14.
    C.D. Kolstad, Learning and stock effects in environmental regulation: the case of greenhouse gas emissions. J. Environ. Econ. Manage. 31 (1996) 1–18.CrossRefGoogle Scholar
  15. 15.
    K. Arrow and A. Fisher, Environmental preservation, uncertainty and irreversibility, Q. J. Econ. 88 (1974) 312–319.CrossRefGoogle Scholar
  16. 16.
    C. Henry, Investment decisions under uncertainty: the irreversibility effect, Am. Econ. Rev. 64 (1974) 1006–1012.Google Scholar
  17. 17.
    W. Nordhaus and D. Popp, What is the value of scientific knowledge? An application to global warming using the PRICE model, Energy J. 18 (1997) 1–46.Google Scholar
  18. 18.
    A.S. Manne and R.G. Richels, Buying Greenhouse Insurance: The Economic Costs of Carbon Dioxide Emission Limits (MIT Press, Cambridge, MA, USA, 1992).Google Scholar
  19. 19.
    S.C. Peck and T.J. Teisberg, Global warming uncertainties and the value of information: an analysis using CETA, Resour. Energy Econ. 15 (1993) 71–97.CrossRefGoogle Scholar
  20. 20.
    S.C. Peck and Y.S. Wan, Analytic solutions of simple optimal greenhouse gas emission models, in: Economics of Atmospheric Pollution, eds. E.C. van Ierland and K. Gorka (Springer Verlag, Berlin Heidelberg New York, 1996) pp. 113–121.Google Scholar
  21. 21.
    M. Ha-Duong, Quasi-option value and climate policy choices, Energy Econ. 20 (1998) 599–620.CrossRefGoogle Scholar
  22. 22.
    A. Ulph and D. Ulph, Who gains from learning about global warming? in: Economics of Atmospheric Pollution, eds. E.C. van Ierland and K. Gorka (Springer Verlag, Berlin Heidelberg New York, 1996) pp. 31–67.Google Scholar
  23. 23.
    E. Baker, Uncertainty and Learning in a Strategic Environment: Global Climate Change (Paper, University of Massachusetts, Amherst, USA, 2003).Google Scholar
  24. 24.
    F.L. Toth, Decision making frameworks, in: IPCC. Third Assessment Report: Climatic Change 2001: Mitigation (Cambridge University Press, New York, USA, 2001) Chapter 10.Google Scholar
  25. 25.
    IPCC, Climate Change 1995. Economic and Social Dimension of Climate Change (Cambridge University Press, New York, USA, 1996).Google Scholar
  26. 26.
    R.I. Willows and R.K. Connell, eds., Climate Adaptation: Risk Uncertainty and Decision-Making, Technical Report (UKCIP, Oxford, UK, 2003).Google Scholar
  27. 27.
    A. Kanudia and R. Loulou, Robust responses to climate change via stochastic MARKAL: the case of Québec, Eur. J. Oper. Res. 106 (1998) 15–30.CrossRefGoogle Scholar
  28. 28.
    R. Loulou and A. Kanudia, Minimax regret strategies for greenhouse gas abatement: methodology and application, Oper. Res. Lett. 25 (1999) 219–230.CrossRefGoogle Scholar
  29. 29.
    A. Lange, Climate change and the irreversibility effect – combining expected utility and maximin, Environ. Resour. Econ. 25 (2003) 417–434.CrossRefGoogle Scholar
  30. 30.
    H. Dowlatabadi and M.G. Morgan, A model framework for integrated assessment of the climate problem, Energy Policy 21 (1993) 209–211.CrossRefGoogle Scholar
  31. 31.
    H. Dowlatabadi, Sensitivity to climate change mitigation estimate to assumptions about technical change, Energy Econ. 20 (1998) 473–493.CrossRefGoogle Scholar
  32. 32.
    D. Cohan, R. Stafford, R. Scheraga and S. Herrod, The global climate policy framework, in: Proceedings of the 1994 A & WMA Global Climate Change Conference: Phoenix April 5–8 (Air & Waste Management Association, Pittsburgh, USA 1994).Google Scholar
  33. 33.
    M.L. Weitzman, Prices vs. quantities, Rev. Econ. Stud. 41 (1974) 477–491.CrossRefGoogle Scholar
  34. 34.
    W.A. Pizer, The optimal choice of climate change policy in the presence of uncertainty, Resour. Energy Econ. 21 (1999) 255–287.CrossRefGoogle Scholar
  35. 35.
    M. Hoel and L. Karp, Taxes and quotas for a stock pollutant with multiplicative uncertainty, J. Public Econ. 82 (2001) 91–114.CrossRefGoogle Scholar
  36. 36.
    F. Lecocq and R. Crassous, International Climate Regime Beyond 2012. Are Quota Allocation Rules Robust to Uncertainty? (Policy Research Working Paper, World Bank, Washington, DC, USA, 2003).CrossRefGoogle Scholar
  37. 37.
    A. Haurie and L. Viguier, A stochastic game of carbon emissions trading, Environ. Model. Assess. 8 (2003) 239–248.CrossRefGoogle Scholar
  38. 38.
    J. Hawellek, Uncertainties of the Cost of the Kyoto Protocol (Working Paper, University of Oldenburg, Oldenburg, Germany, 2003).Google Scholar
  39. 39.
    M. Manning and M. Petit, A concept paper for the AR4 cross cutting theme: uncertainty and risk, http://www.ipcc.ch/activity/cct1.pdf (accessed may 28, 2004), 2003.
  40. 40.
    W. Nordhaus and G. Yohe, Future carbon dioxide emissions from fossil fuels, in: Changing Climate, eds. J.H. Ausubel and W. Nordhaus (National Academy Press, Washington, DC, USA, 1983), pp. 87–153.Google Scholar
  41. 41.
    J.A. Edmonds, J.M. Reilly, R.H. Gardner and A. Brenkert, Uncertainty in Future Global Energy Use and Fossil Fuel CO 2 Emission 1975 to 2075, Report TR036, DO3/NBB-0081 Dist. Category UC-11 (National Technical Information Service, U.S. Department of Commerce, Washington, DC, USA, 1986).Google Scholar
  42. 42.
    A. Manne and R. Richels, The greenhouse debate – economic efficiency, burden sharing and hedging strategies, Energy J. 16 (1995) 1–37.Google Scholar
  43. 43.
    R. Pindyck, Irreversibility and the timing of environmental policy, Resour. Energy Econ. 22 (2000) 233–259.CrossRefGoogle Scholar
  44. 44.
    E. Bosello and M. Moretto, Dynamic Uncertainty and Global Warming Risk, Nota di Lavoro 80.99 (FEEM, Venice, Italy, 1999).Google Scholar
  45. 45.
    E. Castelnuovo, M. Moretto and S. Vergalli, Global warming, uncertainty and endogenous technical change, Environ. Model. Assess. 8 (2003) 291–301.CrossRefGoogle Scholar
  46. 46.
    R. Tol, Safe policies in an uncertain climate: an application of FUND, Glob. Environ. Change 9 (1999) 221–232.CrossRefGoogle Scholar
  47. 47.
    G. Heal, Interactions between economy and climate. A framework for policy design under uncertainty, Appl. Micro-Econ. 3 (1984) 151–168.Google Scholar
  48. 48.
    A. Ulph and D. Ulph, Global warming, irreversibility and learning, Econ. J. 107 (1997) 636–650.CrossRefGoogle Scholar
  49. 49.
    J. Zhao, Irreversible abatement under cost uncertainties: tradable emission permit and emission charges, J. Public Econ. 87 (2003) 2765–2789.CrossRefGoogle Scholar
  50. 50.
    J.M. Reilly, J.A. Edmonds, R.H. Gardner and L.A. Brenker, Uncertainty analysis of the IEA/ORAU CO2 emissions model, Energy J. 8 (1987) 1–29.Google Scholar
  51. 51.
    C. Hope, J. Anderson and P. Wenman, Policy analysis of the greenhouse effect. An application of the PAGE model, Energy Policy 21 (1993) 327–338.CrossRefGoogle Scholar
  52. 52.
    E. Plambeck and C. Hope, PAGE95. An updated valuation of the impacts of global warming, Energy Policy 14 (1996) 783–793.CrossRefGoogle Scholar
  53. 53.
    M.J. Scott, R.D. Sands, J. Edmonds, A.M. Liebetrau and D.W. Engel, Uncertainty in integrated assessment models: modelling with MiniCAM 1.0, Energy Policy 27 (1999) 855–879.CrossRefGoogle Scholar
  54. 54.
    G. Yohe and R. Wallace, Near term mitigation policy for global change under uncertainty: minimizing the expected costs of meeting unknown concentration thresholds, Environ. Model. Assess. 1 (1996) 47–57.CrossRefGoogle Scholar
  55. 55.
    C. Gollier, B. Jullien and N. Treich, Scientific progress and irreversibility: an economic interpretation of the ‘Precautionary Principle,’ J. Public Econ. 75 (2000) 229–253.CrossRefGoogle Scholar
  56. 56.
    M. Grubb, Technologies, energy systems and the timing of CO2 emissions abatement, Energy Policy 25 (1997) 159–172.CrossRefGoogle Scholar
  57. 57.
    M. Webster, The curious role of “learning” in climate policy: should we wait for more data?, Energy J. 23 (2002) 97–119.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Kiel Institute for World EconomicsKielGermany

Personalised recommendations