Environmental Modeling & Assessment

, Volume 10, Issue 2, pp 115–134 | Cite as

The FAIR model: A tool to analyse environmental and costs implications of regimes of future commitments

Article

Abstract

This article describes the policy decision-support tool, FAIR, to assess the environmental and abatement costs implications of international regimes for differentiation of future commitments. The model links long-term climate targets and global reduction objectives with regional emission allowances and abatement costs, accounting for the Kyoto Mechanisms used. FAIR consists of three sub-models: a simple climate model, an emission-allocation model and a cost model. The article also analyses ten different rule-based emission allocation schemes for two long-term concentration stabilisation targets for greenhouse gases. This analysis shows that evaluating regimes requires not only an assessment of the initial allocation, but also of the distribution of abatement costs and the impacts from emissions trading. The Multi-Stage approach (with a gradual increase of Parties adopting emission intensity or reductions targets) and the Triptych approach (with sectoral targets for all Parties) seem to provide the best prospects for most of the Parties when compared to the other allocation schemes analysed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.E. Aldy, J. Ashton, R. Baron, D. Bodansky, S. Charnovitz, E. Diringer, T.C. Heller, J. Pershing, P.R. Shukla, L. Tubiana, F. Tudela and X. Wang, Beyond Kyoto, Advancing the International Effort Against Climate Change (Pew Center on Global Climate Change, Arlington, US, 2003). Google Scholar
  2. [2]
    P. Ambrosi, J.-C. Hourcade, S. Hallegatte, F. Lecocq, P. Dumas and M.H. Duong, Optimal control models and elicitation of attitudes towards climate damages, Environmental Modeling & Assessment 8(3) (2003) 133–147. Google Scholar
  3. [3]
    M.H. Babiker and R.S. Eckhaus, Rethinking the Kyoto targets, Climatic Change 54 (2002) 99–114. CrossRefGoogle Scholar
  4. [4]
    S. Barrett, Towards a better climate treaty. Policy matters, World Economics 3(2) (2001) 35–45. Google Scholar
  5. [5]
    K.A. Baumert, C. Figueres and S. Willems, Capacity challenges and future commitments under the UNFCCC, in: Beyond Kyoto: Meeting the Long-Term Challenge of Global Climate Change, ed. D. Michel (Johns Hopkins University Center for Transatlantic Relations, Transatlantic Dialogue on Climate Change, Washington, DC, 2003). Google Scholar
  6. [6]
    M.M. Berk and M.G.J. den Elzen, Options for differentiation of future commitments in climate policy: how to realise timely participation to meet stringent climate goals?, Climate Policy 1(4) (2001) 465–480. CrossRefGoogle Scholar
  7. [7]
    M.M. Berk, J.G. van Minnen, B. Metz, W. Moomaw, M.G.J. den Elzen, D.P. van Vuuren and J. Gupta, Climate OptiOns for the Longterm (COOL) global dialogue synthesis report, RIVM, Bilthoven, The Netherlands (2001). Google Scholar
  8. [8]
    D. Bodansky, Climate commitments: assessing the options, in: Beyond Kyoto, Advancing the International Effort against Climate Change, eds. J.E. Aldy, J. Ashton, R. Baron, D. Bodansky, S. Charnovitz, E. Diringer, T.C. Heller, J. Pershing, P.R. Shukla, L. Tubiana, F. Tudela and X. Wang (Pew Center on Global Climate Change, Arlington, US, 2003). Google Scholar
  9. [9]
    D. Bodansky, International Climate Efforts Beyond 2012: A Survey of Approaches (Pew Center on Global Climate Change, Arlington, USA, 2004) www.pewclimate.org. Google Scholar
  10. [10]
    E. Claussen and L. McNeilly, Equity and Global Climate Change, The Complex Elements of Global Fairness (PEW Centre on Global Climate Change, Arlington, 1998) http://www.pik-potsdam.de/data/emic/table_of_emics.pdf. Google Scholar
  11. [11]
    R. Cooper, The Kyoto Protocol: A flawed concept, Environmental Law Reporter 31 (2001) 11,484–11,492. Google Scholar
  12. [12]
    CPB, WorldScan: the core version, The Hague CPB Netherlands Bureau for Economic Policy Analysis, 137 (1999). Google Scholar
  13. [13]
    P. Criqui, GECS final report section 6: Detail report, GECS – Research Project N EVK2-CT-1999-00010, Thematic Programme: Environment and Sustainable Development, DG Research Fifth Framework Programme, CNRS-IEPE, Grenoble (2002). Google Scholar
  14. [14]
    P. Criqui, A. Kitous, M.M. Berk, M.G.J. den Elzen, B. Eickhout, P. Lucas, D.P. van Vuuren, N. Kouvaritakis and D. Vanregemorter, Greenhouse gas reduction pathways in the UNFCCC Process up to 2025, Technical Report, B4-3040/2001/325703/MAR/E.1 for the DG Environment, CNRS-IEPE, Grenoble, France (2003). Google Scholar
  15. [15]
    P. Criqui and N. Kouvaritakis, World energy projections to 2030, International Journal of Global Energy Issues 14(1–4) (2000) 116–136. Google Scholar
  16. [16]
    P. Criqui, S. Mima and L. Viguier, Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings: an assessment using the POLES model, Energy Policy 27(10) (1999) 585–601. CrossRefGoogle Scholar
  17. [17]
    CSE, Definitions of equal entitlements, CSE-dossier, fact sheet 5, Centre for Science and Environment (CSE), Delhi, India (1998). Google Scholar
  18. [18]
    U. Cubasch, G.A. Meehl, G.J. Boer, R.J. Stouffer, M. Dix, A. Noda, C.A. Senior, S. Raper and K.S. Yap, Projections of future climate change, in: Climate Change 2001: The Scientific Basis, eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson (Cambridge University Press, Cambridge, UK, 2001). Google Scholar
  19. [19]
    H.J.M. de Vries, D.P. van Vuuren, M.G.J. den Elzen and M.A. Janssen, The Targets Image Energy Model Regional (TIMER) – Technical documentation, RIVM report 461502024, Bilthoven, the Netherlands (2002). Google Scholar
  20. [20]
    B.J. DeAngelo, F.C. DelaChesnaye, R.H. Beach, A. Sommer and B.C. Murray, Methane and nitrous oxide mitigation in agriculture, Energy Journal (2004) (in press). Google Scholar
  21. [21]
    K.C. Delhotal, F.C. DelaChesnaye, A. Gardiner, J. Bates and A. Sankovski, Mitigation of methan and nitrous oxide emissions from waste, energy and industry, Energy Journal (2004) (in press). Google Scholar
  22. [22]
    M.G.J. den Elzen, Exploring climate regimes for differentiation of future commitments to stabilise greenhouse gas concentrations, Integrated Assessment 3(4) (2002) 343–359. CrossRefGoogle Scholar
  23. [23]
    M.G.J. den Elzen and M. Berk, How can the Parties fairly and effectively establish future obligations under long-term objectives?, in: Climate Policy for the 21st Century: Meeting the Long-Term Challenge of Global Warming, ed. D. Michel (Center for Transatlantic Relations, Washington, DC, 2003). Google Scholar
  24. [24]
    M.G.J. den Elzen and M.M. Berk, Bottom up approaches for defining future climate mitigation commitments, RIVM report 728001029/2004, Bilthoven, The Netherlands (2004). Google Scholar
  25. [25]
    M.G.J. den Elzen, M.M. Berk, P. Lucas, C. Criqui and A. Kitous, Multi-Stage: a rule-based evolution of future commitments under the Climate Change Convention, International Environmental Agreements (2005) (in press). Google Scholar
  26. [26]
    M.G.J. den Elzen, M.M. Berk, P. Lucas, B. Eickhout and D.P.v. Vuuren, Exploring climate regimes for differentiation of commitments to achieve the EU climate target, www.mnp.nl/ieweb RIVM-report 728001023, RIVM, Bilthoven, The Netherlands (2003).
  27. [27]
    M.G.J. den Elzen and A.P.G. de Moor, Evaluating the Bonn agreement and some key issues, RIVM-report 728001016, Bilthoven, The Netherlands (2001). Google Scholar
  28. [28]
    M.G.J. den Elzen and A.P.G. de Moor, Analysing the Bonn Agreement and Marrakesh Accords: Economic efficiency & environmental effectiveness, Ecological Economics 43 (2002) 141–158. CrossRefGoogle Scholar
  29. [29]
    M.G.J. den Elzen and P. Lucas, FAIR 2.0: a decision-support model to assess the environmental and economic consequences of future climate regimes, www.mnp.nl/fair, RIVM-report 550015001, Bilthoven, The Netherlands (2003).
  30. [30]
    M.G.J. den Elzen, P. Lucas and D.P. van Vuuren, Abatement costs of post-Kyoto climate regimes, Energy Policy 33(16) (2005) 2138–2151. CrossRefGoogle Scholar
  31. [31]
    M.G.J. den Elzen and M. Meinshausen, Global and regional emission implications needed to meet the EU two degree target with more certainty, RIVM report 728001031, Bilthoven, The Netherlands (2005). Google Scholar
  32. [32]
    M.G.J. den Elzen and M. Schaeffer, Responsibility for past and future global warming: uncertainties in attributing anthropogenic climate change, Climatic Change 54 (2002) 29–73. CrossRefGoogle Scholar
  33. [33]
    M.G.J. den Elzen, M. Schaeffer and B. Eickhout, Responsibility for past and future global warming: time horizon and non-linearities in the climate system, RIVM-report 728001022, Bilthoven, The Netherlands (2002). Google Scholar
  34. [34]
    M.G.J. den Elzen, M. Schaeffer and P. Lucas, Differentiation of future commitments based on Parties’ contribution to climate change, Climate Change (2004) (in press). Google Scholar
  35. [35]
    J. Edmonds and M.A. Wise, Exploring a Technology Strategy for stabilising atmospheric CO2, in: International Environmental Agreements on Climate Change, ed. C. Carraro (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999). Google Scholar
  36. [36]
    B. Eickhout, M.G.J. den Elzen and D.P. van Vuuren, Multi-gas emission profiles for stabilising greenhouse gas concentrations, RIVM-report 728001026, Bilthoven, The Netherlands (2003). Google Scholar
  37. [37]
    A.D. Ellerman and A. Decaux, Analysis of Post-Kyoto CO2 Emissions Trading Using Marginal Abatement Curves, Report No 40 (MIT, Cambridge, MA, 1998). Google Scholar
  38. [38]
    C. Graveland, A.F. Bouwman, H.J.M. de Vries, B. Eickhout and B.J. Strengers, Projections of multi-gas emissions and carbon sinks, and marginal abatement cost functions modelling for land-use related sources, RIVM-report 461502026, Bilthoven, The Netherlands (2002). Google Scholar
  39. [39]
    H. Groenenberg, Development and Convergence: A Bottom-up Analysis for the Differentiation of Future Commitments under the Climate Convention (Utrecht University, Utrecht, The Netherlands, 2002). Google Scholar
  40. [40]
    J. Gupta, Encouraging Developing Country Participation in the Climate Change Regime (Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands, 1998). Google Scholar
  41. [41]
    K. Hasselmann, R. Sausen, E. Maier-Reimer and R. Voss, On the cold start problem in transient simulations with coupled atmosphere–ocean models, Climate Dynamics 9 (1993) 53–61. CrossRefGoogle Scholar
  42. [42]
    N. Höhne, C. Galleguillos, K. Blok, J. Harnisch and D. Phylipsen, Evolution of commitments under the UNFCCC: Involving newly industrialized countries and developing countries, Research-report 20141255, UBA-FB 000412, ECOFYS Gmbh, Berlin (2003). Google Scholar
  43. [43]
    J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell, eds., Climate Change 1995 – The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 1996). Google Scholar
  44. [44]
    R.A. Houghton, Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus 55B (2003) 378–390. Google Scholar
  45. [45]
    R.C. Hyman, J.M. Reilly, M.H. Babiker, A. De Masin and H. Jacoby, Modeling non-CO2 greenhouse gas abatement, Environmental Modeling and Assessment 8 (2002) 175–186. CrossRefGoogle Scholar
  46. [46]
    IMAGE-team, The IMAGE 2.2 implementation of the SRES scenarios. A comprehensive analysis of emissions, climate change and impacts in the 21st century, CD-ROM publication 481508018, Bilthoven, The Netherlands (2001). Google Scholar
  47. [47]
    IPCC, Climate Change 2001. The Science of Climate Change, IPCC Assessment Reports (Cambridge University Press, Cambridge, UK, 2001) pp. 1–18. Google Scholar
  48. [48]
    H. Jacoby and A. Ellerman, The safety valve and climate policy, Energy Policy 32(4) (2004) 481–491. CrossRefGoogle Scholar
  49. [49]
    H.D. Jacoby, R. Schmalensee and I.S. Wing, Toward a Useful Architecture for Climate Change Negotiations, Report No 49 (MIT, Cambridge, MA, 1999). Google Scholar
  50. [50]
    F. Joos, G.-K. Plattner, T.F. Stocker, O. Marchal and A. Schmittner, Global warming and marine carbon cycle feedbacks on future atmospheric CO2, Science 284 (1999) 464–467. CrossRefPubMedGoogle Scholar
  51. [51]
    Y. Kameyama, The future climate regime: a regional comparison of proposals, International Environmental Agreements: Politics, Law and Economics 4 (2004) 307–326. Google Scholar
  52. [52]
    Y.-G. Kim and K.A. Baumert, Reducing uncertainty through dual-intensity targets, in: Building on the Kyoto Protocol: Options for Protecting the Climate, eds. K.A. Baumert, O. Blanchard, S. Llose and J.F. Perkaus (World Resource Institute, Washington, DC, 2002). Google Scholar
  53. [53]
    P.L. Lucas, M.G.J. den Elzen and D.P. van Vuuren, A multi-gas abatement analysis of the Marrakesh Accords, RIVM-report 550006001, Dutch National Institute of Public Health and the Environment, Bilthoven, The Netherlands (2005). Google Scholar
  54. [54]
    A.S. Manne and R.G. Richels, An alternative approach to establishing trade-offs among greenhouse gases, Nature 410 (2001) 675–677. CrossRefPubMedGoogle Scholar
  55. [55]
    A. Meyer, Contraction & Convergence. The Global Solution to Climate Change. Schumacher Briefings, Vol. 5 (Green Books, Bristol, UK, 2000). Google Scholar
  56. [56]
    B. Müller, Justice in Global Warming Negotiations – How to Achieve a Procedurally Fair Compromis (Oxford Institute for Energy Studies, Oxford, 1999). Google Scholar
  57. [57]
    N. Nakicenovic et al., Special Report on Emissions Scenarios, IPCC Special Reports (Cambridge University Press, Cambridge, UK, 2000). Google Scholar
  58. [58]
    M.L. Parry, Global impacts of climate change under the SRES scenarios, Global Environmental Change 12(1) (2004) ??–??. Google Scholar
  59. [59]
    C. Philibert and J. Pershing, Considering the options: climate targets for all countries, Climate Policy 1(2) (2001) 211–227. CrossRefGoogle Scholar
  60. [60]
    C. Philibert, J. Pershing, J.C. Morlot and S. Wilems, Evolution of mitigation commitments: some key issues, OECD/IEA, Paris Cedex, France (2003). Google Scholar
  61. [61]
    G.J.M. Phylipsen, J.W. Bode, K. Blok, H. Merkus and B. Metz, A Triptych sectoral approach to burden differentiation; GHG emissions in the European bubble, Energy Policy 26(12) (1998) 929–943. CrossRefGoogle Scholar
  62. [62]
    M. Prather, D. Ehhalt, F.J. Dentener, R. Derwent, E. Dlugokencky, E. Holland, I. Isaksen, J. Katima, V. Kirchhoff, P. Matson, P. Midgley and M. Wang, Atmospheric chemistry and greenhouse gases, in: IPCC Third Assessment – Climate Change 2001, The Scientific Basis, eds. J.T. Houghton, Y. Ding, D.J. Groggs, M. Nogour, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson (Cambridge University Press, Cambridge, UK, 2001). Google Scholar
  63. [63]
    I.C. Prentice, G. Farquhar, M.J.R. Fasham, M.L. Goulden, M. Heimann, V.J. Jaramillo, H.S. Kheshgi, C. Le Quere, R.J. Scholes and D.W.R. Wallace, The carbon cycle and atmospheric carbon dioxide, in: Climate Change 2001: The Scientific Basis, eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson (Cambridge University Press, Cambridge, UK, 2001). Google Scholar
  64. [64]
    L. Ringius, A. Torvanger and B. Holtsmark, Can multi-criteria rules fairly distribute climate burdens? – OECD results from three burden sharing rules, Energy Policy 26(10) (1998) 777–793. CrossRefGoogle Scholar
  65. [65]
    L. Ringius, A. Torvanger and A. Underdal, Burden sharing in international climate policy: principles of fairness in theory and practice, International Environmental Agreements: Politics, Law and Economics 2 (2002) 1–22. Google Scholar
  66. [66]
    A. Rose, B. Stevens, J. Edmonds and M. Wise, International equity and differentiation in global warming policy, Environmental & Resource Economics 12(1) (1998) 25–51. Google Scholar
  67. [67]
    D.O. Schaefer, D. Godwin and J. Harnisch, Estimating future emissions and potential reductions of HFCs, PFCs and SF6, Energy Journal (2004) (in press). Google Scholar
  68. [68]
    T.C. Schelling, What makes greenhouse sense? Time to rethink the Kyoto Protocol, Foreign Affairs 81(3) (2002) 2–9. Google Scholar
  69. [69]
    S.J. Smith and T.M.L. Wigley, Global warming potentials: 1. Climatic implications of emission reductions, Climatic Change 44 (1990) 445–457. CrossRefGoogle Scholar
  70. [70]
    S.J. Smith and T.M.L. Wigley, Global Warming Potentials: 2. Accuracy, Climatic Change 44 (1990) 459–469. CrossRefGoogle Scholar
  71. [71]
    A. Torvanger and O. Godal, An evaluation of pre-Kyoto differentiation proposals for national greenhouse gas abatement targets, International Environmental Agreements: Politics, Law and Economics 4 (2004) 65–91. Google Scholar
  72. [72]
    UNFCCC, United Nations General Assemby, United Nations Framework Convention on Climate Change, http://www.unfccc.int/resources, United Nations, New York (1992).
  73. [73]
    UNFCCC, Paper no. 1: Brazil; Proposed Elements of a Protocol to the United Nations Framework Convention on Climate Change, UNFCCC/AGBM/1997/MISC.1/Add.3 GE.97, Bonn (1997). Google Scholar
  74. [74]
    UNFCCC, Assessment of contributions to climate change, Terms of Reference http://unfccc.int/program/mis/brazil/index.html (2002).
  75. [75]
    UNFCCC, Methodological Issues, Scientific and methodological assessment of contributions to climate change, Report of the expert meeting, Note by the secretariat, FCCC/SBSTA/2002/INF.14, http://www.unfccc.int (2002).
  76. [76]
    J.A. Van Aardenne, F.J. Dentener, J.G.J. Olivier, C.G.M. Klein Goldewijk and J. Lelieveld, A 1×1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990, Global Biogeochemical Cycles 15(4) (2001) 909–928. CrossRefGoogle Scholar
  77. [77]
    D.P. van Vuuren, H.J.M. de Vries, B. Eickhout and T. Kram, Responses to technology and taxes in a simulated world, Energy Economics 26 (2004) 579–601. CrossRefGoogle Scholar
  78. [78]
    D.P. van Vuuren, M.G.J. den Elzen and M.M. Berk, An evaluation of the level of ambition and implications of the Bush Climate Change Initiative, Climate Policy 2 (2002) 293–301. CrossRefGoogle Scholar
  79. [79]
    D.P. van Vuuren, M.G.J. den Elzen, M.M. Berk, P. Lucas, B. Eickhout, H. Eerens and R. Oostenrijk, Regional costs and benefits of alternative post-Kyoto climate regimes, RIVM-report 728001025, National Institute for Public Health and the Environment, Bilthoven, The Netherlands (2003). Google Scholar
  80. [80]
    D.P. van Vuuren, B. Eickhout, P.L. Lucas and M.G.J. den Elzen, Long-term multi-gas scenarios to stabilise radiative forcing – exploring costs and benefits within an integrated assessment framework, Energy Journal (2004) (accepted). Google Scholar
  81. [81]
    T.M.L. Wigley, Could reducing fossil-fuel emissions cause global warming?, Nature 349 (1991) 503–506. CrossRefGoogle Scholar
  82. [82]
    T.M.L. Wigley and S.C.B. Raper, Implications for climate and sea-level of revised IPCC emissions scenarios, Nature 357 (1992) 293–300. CrossRefGoogle Scholar
  83. [83]
    WorldBank, World Development Report 2000/2001: Attacking Poverty (Oxford University Press, Oxford, UK, 2001). Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Netherlands Environmental Assessment Agency (MNP at RIVM)BilthovenThe Netherlands

Personalised recommendations