Journal of Engineering Mathematics

, Volume 119, Issue 1, pp 217–239 | Cite as

Modeling and simulation of gas networks coupled to power grids

  • E. Fokken
  • S. GöttlichEmail author
  • O. Kolb


A mathematical framework for the coupling of gas networks to electric grids is presented to describe in particular the transition from gas to power. The dynamics of the gas flow are given by the isentropic Euler equations, while the power flow equations are used to model the power grid. We derive pressure laws for the gas flow that allow for the well-posedness of the coupling and a rigorous treatment of solutions. For simulation purposes, we apply appropriate numerical methods and show in an experimental study how gas-to-power might influence the dynamics of the gas and power network, respectively.


Gas networks Power flow equations Pressure laws Simulation 

Mathematics Subject Classification

35L65 65M08 



The authors gratefully thank the BMBF project ENets (05M18VMA) for the financial support.


  1. 1.
    Chertkov M, Backhaus S, Lebedev V (2015) Cascading of fluctuations in interdependent energy infrastructures: gas–grid coupling. Appl Energy 160:541–551CrossRefGoogle Scholar
  2. 2.
    Zeng Q, Fang J, Li J, Chen Z (2016) Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. Appl Energy 184:1483–1492CrossRefGoogle Scholar
  3. 3.
    Zlotnik A, Roald L, Backhaus S, Chertkov M, Andersson G (2016) Control policies for operational coordination of electric power and natural gas transmission systems. Am Control Conf 2016:7478–7483Google Scholar
  4. 4.
    Herty M, Müller S, Sikstel A (2019) Coupling of compressible Euler equations. Vietnam J Math.
  5. 5.
    Banda M, Herty M, Klar A (2006) Coupling conditions for gas networks governed by the isothermal Euler equations. Netw Heterog Media 1:295–314MathSciNetCrossRefGoogle Scholar
  6. 6.
    Banda M, Herty M, Klar A (2006) Gas flow in pipeline networks. Netw Heterog Media 1:41–56MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bressan A, Canic S, Garavello M, Herty M, Piccoli B (2014) Flow on networks: recent results and perspectives. Eur Math Soc 1:47–111MathSciNetzbMATHGoogle Scholar
  8. 8.
    Brouwer J, Gasser I, Herty M (2011) Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model Simul 9:601–623MathSciNetCrossRefGoogle Scholar
  9. 9.
    Colombo R, Garavello M (2008) On the Cauchy problem for the p-system at a junction. SIAM J Math Anal 39:1456–1471MathSciNetCrossRefGoogle Scholar
  10. 10.
    Reigstad G (2015) Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow. SIAM J Appl Math 75:679–702MathSciNetCrossRefGoogle Scholar
  11. 11.
    Reigstad G (2014) Numerical network models and entropy principles for isothermal junction flow. Netw Heterog Media 9:65MathSciNetCrossRefGoogle Scholar
  12. 12.
    LeVeque R (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. 13.
    Gyrya V, Zlotnik A (2019) An explicit staggered-grid method for numerical simulation of large-scale natural gas pipeline networks. Appl Math Model 65:34–51MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pfetsch ME, Koch T, Schewe L, Hiller B (eds) (2015) Evaluating gas network capacities. Society for Industrial and Applied Mathematics, PhiladelphiazbMATHGoogle Scholar
  15. 15.
    Kolb O, Lang J, Bales P (2010) An implicit box scheme for subsonic compressible flow with dissipative source term. Numer Algorithms 53:293–307MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bienstock D (2015) Electrical transmission system cascades and vulnerability. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  17. 17.
    Heuck K, Dettmann K, Schultz D (2013) Elektrische energieversorgung. Springer Vieweg, BerlinCrossRefGoogle Scholar
  18. 18.
    Göttlich S, Herty M, Schillen P (2016) Electric transmission lines: control and numerical discretization. Optim Control Appl Methods 37:980–995MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fokken E, Göttlich S, Kolb O (2019) Optimal control of compressor stations in a coupled gas-to-power network. arXiv:1901.00522
  20. 20.
    Egger H (2018) A robust conservative mixed finite element method for isentropic compressible flow on pipe networks. SIAM J Sci Comput 40:A108–A129MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhou J, Adewumi M (1996) Simulation of transients in natural gas pipelines. SPE Prod Facil 11:202–207CrossRefGoogle Scholar
  22. 22.
    Gugat M, Herty M, Klar A, Leugering G, Schleper V (2012) Well-posedness of networked hyperbolic systems of balance laws. In: Leugering G, Engell S, Griewank A, Hinze M, Rannacher R, Schulz V, Ulbrich M, Ulbrich S (eds) Constrained optimization and optimal control for partial differential equations. Springer, Basel, pp 123–146CrossRefGoogle Scholar
  23. 23.
    Gugat M, Herty M, Müller S (2017) Coupling conditions for the transition from supersonic to subsonic fluid states. Netw Heterog Media 12:371–380MathSciNetCrossRefGoogle Scholar
  24. 24.
    Grainger J, Stevenson W, Chang G (2016) Power system analysis. McGraw-Hill series in electrical and computer engineering: power and energy. McGraw-Hill Education, New YorkGoogle Scholar
  25. 25.
    Kolb O (2014) On the full and global accuracy of a compact third order WENO scheme. SIAM J Numer Anal 52:2335–2355MathSciNetCrossRefGoogle Scholar
  26. 26.
    Naumann A, Kolb O, Semplice M (2018) On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws. Appl Math Comput 325:252–270MathSciNetGoogle Scholar
  27. 27.
    Zimmerman RD, Murillo-Sanchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26:12–19CrossRefGoogle Scholar
  28. 28.
    Humpola J, Joormann I, Kanelakis N, Oucherif D, Pfetsch M, Schewe L, Schmidt M, Schwarz R, Sirvent M (2017) GasLib: a library of gas network instances. Technical reportGoogle Scholar
  29. 29.
    Gugat M, Schuster M (2018) Stationary gas networks with compressor control and random loads: optimization with probabilistic constraints. Math Probl Eng 2018:7984079MathSciNetCrossRefGoogle Scholar
  30. 30.
    Göttlich S, Korn R, Lux K (2019) Optimal control of electricity input given an uncertain demand. Math Methods Oper Res. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MannheimMannheimGermany

Personalised recommendations