Journal of Engineering Mathematics

, Volume 119, Issue 1, pp 217–239

# Modeling and simulation of gas networks coupled to power grids

• E. Fokken
• S. Göttlich
• O. Kolb
Article

## Abstract

A mathematical framework for the coupling of gas networks to electric grids is presented to describe in particular the transition from gas to power. The dynamics of the gas flow are given by the isentropic Euler equations, while the power flow equations are used to model the power grid. We derive pressure laws for the gas flow that allow for the well-posedness of the coupling and a rigorous treatment of solutions. For simulation purposes, we apply appropriate numerical methods and show in an experimental study how gas-to-power might influence the dynamics of the gas and power network, respectively.

## Keywords

Gas networks Power flow equations Pressure laws Simulation

35L65 65M08

## Notes

### Acknowledgements

The authors gratefully thank the BMBF project ENets (05M18VMA) for the financial support.

## References

1. 1.
Chertkov M, Backhaus S, Lebedev V (2015) Cascading of fluctuations in interdependent energy infrastructures: gas–grid coupling. Appl Energy 160:541–551
2. 2.
Zeng Q, Fang J, Li J, Chen Z (2016) Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. Appl Energy 184:1483–1492
3. 3.
Zlotnik A, Roald L, Backhaus S, Chertkov M, Andersson G (2016) Control policies for operational coordination of electric power and natural gas transmission systems. Am Control Conf 2016:7478–7483Google Scholar
4. 4.
Herty M, Müller S, Sikstel A (2019) Coupling of compressible Euler equations. Vietnam J Math.
5. 5.
Banda M, Herty M, Klar A (2006) Coupling conditions for gas networks governed by the isothermal Euler equations. Netw Heterog Media 1:295–314
6. 6.
Banda M, Herty M, Klar A (2006) Gas flow in pipeline networks. Netw Heterog Media 1:41–56
7. 7.
Bressan A, Canic S, Garavello M, Herty M, Piccoli B (2014) Flow on networks: recent results and perspectives. Eur Math Soc 1:47–111
8. 8.
Brouwer J, Gasser I, Herty M (2011) Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model Simul 9:601–623
9. 9.
Colombo R, Garavello M (2008) On the Cauchy problem for the p-system at a junction. SIAM J Math Anal 39:1456–1471
10. 10.
Reigstad G (2015) Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow. SIAM J Appl Math 75:679–702
11. 11.
Reigstad G (2014) Numerical network models and entropy principles for isothermal junction flow. Netw Heterog Media 9:65
12. 12.
LeVeque R (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge
13. 13.
Gyrya V, Zlotnik A (2019) An explicit staggered-grid method for numerical simulation of large-scale natural gas pipeline networks. Appl Math Model 65:34–51
14. 14.
Pfetsch ME, Koch T, Schewe L, Hiller B (eds) (2015) Evaluating gas network capacities. Society for Industrial and Applied Mathematics, Philadelphia
15. 15.
Kolb O, Lang J, Bales P (2010) An implicit box scheme for subsonic compressible flow with dissipative source term. Numer Algorithms 53:293–307
16. 16.
Bienstock D (2015) Electrical transmission system cascades and vulnerability. Society for Industrial and Applied Mathematics, Philadelphia
17. 17.
Heuck K, Dettmann K, Schultz D (2013) Elektrische energieversorgung. Springer Vieweg, Berlin
18. 18.
Göttlich S, Herty M, Schillen P (2016) Electric transmission lines: control and numerical discretization. Optim Control Appl Methods 37:980–995
19. 19.
Fokken E, Göttlich S, Kolb O (2019) Optimal control of compressor stations in a coupled gas-to-power network. arXiv:1901.00522
20. 20.
Egger H (2018) A robust conservative mixed finite element method for isentropic compressible flow on pipe networks. SIAM J Sci Comput 40:A108–A129
21. 21.
Zhou J, Adewumi M (1996) Simulation of transients in natural gas pipelines. SPE Prod Facil 11:202–207
22. 22.
Gugat M, Herty M, Klar A, Leugering G, Schleper V (2012) Well-posedness of networked hyperbolic systems of balance laws. In: Leugering G, Engell S, Griewank A, Hinze M, Rannacher R, Schulz V, Ulbrich M, Ulbrich S (eds) Constrained optimization and optimal control for partial differential equations. Springer, Basel, pp 123–146
23. 23.
Gugat M, Herty M, Müller S (2017) Coupling conditions for the transition from supersonic to subsonic fluid states. Netw Heterog Media 12:371–380
24. 24.
Grainger J, Stevenson W, Chang G (2016) Power system analysis. McGraw-Hill series in electrical and computer engineering: power and energy. McGraw-Hill Education, New YorkGoogle Scholar
25. 25.
Kolb O (2014) On the full and global accuracy of a compact third order WENO scheme. SIAM J Numer Anal 52:2335–2355
26. 26.
Naumann A, Kolb O, Semplice M (2018) On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws. Appl Math Comput 325:252–270
27. 27.
Zimmerman RD, Murillo-Sanchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26:12–19
28. 28.
Humpola J, Joormann I, Kanelakis N, Oucherif D, Pfetsch M, Schewe L, Schmidt M, Schwarz R, Sirvent M (2017) GasLib: a library of gas network instances. Technical reportGoogle Scholar
29. 29.
Gugat M, Schuster M (2018) Stationary gas networks with compressor control and random loads: optimization with probabilistic constraints. Math Probl Eng 2018:7984079
30. 30.
Göttlich S, Korn R, Lux K (2019) Optimal control of electricity input given an uncertain demand. Math Methods Oper Res.

## Authors and Affiliations

• E. Fokken
• 1
• S. Göttlich
• 1
• O. Kolb
• 1
1. 1.Department of MathematicsUniversity of MannheimMannheimGermany