Advertisement

Journal of Engineering Mathematics

, Volume 107, Issue 1, pp 231–251 | Cite as

Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling

Article
  • 424 Downloads

Abstract

Ferrofluids are typically suspensions of magnetite nanoparticles, and behave as a homogeneous continuum. The ability of the ferrofluid to respond to an external magnetic field in a controllable manner has made it emerge as a smart material in a variety of applications, such as seals, lubricants, electronics cooling, shock absorbers and adaptive optics. Magnetic nanoparticle suspensions have also gained attraction recently in a range of biomedical applications, such as cell separation, hyperthermia, MRI, drug targeting and cancer diagnosis. In this review, we provide an introduction to mathematical modeling of three problems: motion of superparamagnetic nanoparticles in magnetic drug targeting, the motion of a ferrofluid drop consisting of chemically bound nanoparticles without a carrier fluid, and the breakage of a thin film of a ferrofluid.

Keywords

Ferrofluid Superparamagnetic nanoparticles Thin film approximation Volume-of-Fluid method 

Notes

Acknowledgements

This work is partially supported by NSF-DMS-1311707 and NSF-CBET-1604351.

References

  1. 1.
    Liu X, Kaminski MD, Riffle JS, Chen H, Torno M, Finck MR, Taylor L, Rosengart AJ (2007) Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. J Magn Magn Mater 311:84–87Google Scholar
  2. 2.
    Afkhami S, Tyler AJ, Renardy Y, Renardy M, Woodward RC, Pierre TGSt, Riffle JS, (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384Google Scholar
  3. 3.
    Balasubramaniam S, Kayandan S, Lin Y, Kelly DF, House MJ, Woodward RC, Pierre TGSt, Riffle JS, Davis RM, (2014) Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast. Langmuir 30(6):1580–1587Google Scholar
  4. 4.
    Dung NT, Long NV, Tam LTT, Nam PH, Tung LD, Phuc NX, Lu LT, Thanh NTK (2017) High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles. Nanoscale 9:8952–8961CrossRefGoogle Scholar
  5. 5.
    Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821CrossRefGoogle Scholar
  6. 6.
    Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496ADSCrossRefGoogle Scholar
  7. 7.
    Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172Google Scholar
  8. 8.
    Berry CC (2009) Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D 42:224003Google Scholar
  9. 9.
    Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24CrossRefGoogle Scholar
  10. 10.
    Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323:651–668ADSCrossRefGoogle Scholar
  11. 11.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review. medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11CrossRefGoogle Scholar
  12. 12.
    Puri IK, Ganguly R (2014) Particle transport in therapeutic magnetic fields. Annu Rev Fluid Mech 46:407–40ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO (2014) Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11(4):817–839CrossRefGoogle Scholar
  14. 14.
    Al-Jamal KT, Bai J, Wang JT, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA (2016) Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett 16(9):5652–5660ADSCrossRefGoogle Scholar
  15. 15.
    Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14CrossRefGoogle Scholar
  16. 16.
    Radon P, Loewa N, Gutkelch D, Wiekhorst F (2017) Design and characterization of a device to quantify the magnetic drug targeting efficiency of magnetic nanoparticles in a tube flow phantom by magnetic particle spectroscopy. J Magn Magn Mater 427:175–180ADSCrossRefGoogle Scholar
  17. 17.
    Suh YK, Kang S (2011) Motion of paramagnetic particles in a viscous fluid under a uniform magnetic field: benchmark solutions. J Eng Math 69(1):25–58CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Banerjee Y, Bit P, Ganguly R, Hardt S (2012) Aggregation dynamics of particles in a microchannel due to an applied magnetic field. Microfluid Nanofluid 13(4):565–577CrossRefGoogle Scholar
  19. 19.
    van Reenen A, Gao Y, de Jong AM, Hulsen MA, den Toonder JMJ, Prins MWJ (2014) Dynamics of magnetic particles near a surface: model and experiments on field-induced disaggregation. Phys Rev E 89(4):042306ADSCrossRefGoogle Scholar
  20. 20.
    Tsai SSH, Griffiths IM, Stone HA (2011) Microfluidic immunomagnetic multi-target sorting: a model for controlling deflection of paramagnetic beads. Lab Chip 11:2577–2582CrossRefGoogle Scholar
  21. 21.
    Kang JH, Um E, Diaz A, Driscoll H, Rodas MJ, Domansky K, Watters AL, Super M, Stone HA, Ingber DE (2015) Optimization of pathogen capture in flowing fluids with magnetic nanoparticles. Small 11(42):5657–5666CrossRefGoogle Scholar
  22. 22.
    Mefford OT, Woodward RC, Goff JD, Vadala TP, Pierre TGSt, Dailey JP, Riffle JS, (2007) Field-induced motion of ferrofluids through immiscible viscous media. J Magn Magn Mater 311:347–353Google Scholar
  23. 23.
    Mefford OT, Carroll MRJ, Vadala ML, Goff JD, Mejia-Ariza R, Saunders M, Woodward RC, Pierre TGSt, Davis RM, Riffle JS, (2008) Size analysis of PDMS-magnetite nanoparticle complexes: experiment and theory. Chem Mater 20(6):2184–2191Google Scholar
  24. 24.
    Mefford OT, Vadala ML, Carroll MRJ, Mejia-Ariza R, Caba Beth L, Timothy Pierre, GSt, Woodward Robert C, Davis Richey M, Riffle JS, (2008) Stability of polydimethylsiloxane-magnetite nanoparticles against flocculation: interparticle interactions of polydisperse materials. Langmuir 24(9):5060–5069Google Scholar
  25. 25.
    Rowghanian P, Meinhart CD, Campás O (2016) Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J Fluid Mech 802:245–262ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Afkhami S, Renardy Y, Renardy M, Riffle JS, St. Pierre TG, (2008) Field-induced motion of ferrofluid droplets through immiscible viscous media. J Fluid Mech 610:363–380Google Scholar
  27. 27.
    Cristini V, Guido S, Alfani A, Blawzdziewicz J, Loewenberg M (2003) Drop breakup and fragment size distribution in shear flow. J Rheol 47:1283–1298ADSCrossRefGoogle Scholar
  28. 28.
    Janssen PJA, Anderson PD (2008) A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops. J Comput Phys 227:8807–8819ADSCrossRefMATHGoogle Scholar
  29. 29.
    Bazhlekov IB, Anderson PD, Meijer HEH (2006) Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J Colloid Interface Sci 298:369–394ADSCrossRefGoogle Scholar
  30. 30.
    Erdmanis J, Kitenbergs G, Perzynski R, Cēbers A (2017) Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment. J Fluid Mech 821:266–295ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Lebedev AV, Engel A, Moroznov KI, Bauke H (2003) Ferrofluid drops in rotating magnetic fields. N J Phys 5(57):1–20Google Scholar
  32. 32.
    Feng JJ, Chen C-Y (2016) Interfacial dynamics in complex fluids. J Fluid Sci Technol 11(4):JFST0021Google Scholar
  33. 33.
    Cowley MD, Rosensweig R (1968) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30(4):671–688ADSCrossRefMATHGoogle Scholar
  34. 34.
    Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, New YorkGoogle Scholar
  35. 35.
    Lange A, Richter R, Tobiska L (2007) Linear and nonlinear approach to the rosensweig instability. GAMM-Mitt 30(1):171–184CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T (2016) Observing the rosensweig instability of a quantum ferrofluid. Nature 530:194–197ADSCrossRefGoogle Scholar
  37. 37.
    Lavrova O, Polevikov V, Tobiska L (2012) Numerical study of diffusion of interacting particles in a magnetic fluid layer. Numerical modeling. InTech, pp 183–202Google Scholar
  38. 38.
    Kang TG, Gao Y, Hulsen MA, den Toonder JMJ, Anderson PD (2013) Direct simulation of the dynamics of two spherical particles actuated magnetically in a viscous fluid. Comput Fluids 86:569–581CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Seric I, Afkhami S, Kondic L (2014) Interfacial instability of thin ferrofluid films under a magnetic field. J Fluid Mech 755:R1Google Scholar
  40. 40.
    Conroy DT, Matar OK (2015) Thin viscous ferrofluid film in a magnetic field. Phys Fluids 27:092102ADSCrossRefGoogle Scholar
  41. 41.
    Craster RV, Matar OK (2005) Electrically induced pattern formation in thin leaky dielectric films. Phys Fluids 17:032104ADSCrossRefMATHGoogle Scholar
  42. 42.
    Yue P, Lee S, Afkhami S, Renardy Y (2012) On the motion of superparamagnetic particles in magnetic drug targeting. Acta Mech 223(3):505–527CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    LifeForce Hospitals Webserver medmail@usa.net. http://chemo.net/newpage91.htm, Copyright 1999
  44. 44.
    House SD, Johnson PC (1986) Diameter and blood flow of skeletal muscle venules during local flow regularization. Am J Physiol Heart Circ Physiol 250:H828–H837Google Scholar
  45. 45.
    Cohen EGD, van Zon R (2007) Stationary state fluction theorems for driven Langevin systems. C R Phys 8:507–517ADSCrossRefGoogle Scholar
  46. 46.
    Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293:455–463ADSCrossRefGoogle Scholar
  47. 47.
    Cherry EM, Eaton JK (2014) A comprehensive model of magnetic particle motion during magnetic drug targeting. Int J Mult Flow 59:173–185CrossRefGoogle Scholar
  48. 48.
    Furlani EP (2010) Magnetic biotransport: analysis and applications. Materials 3:2412–2446Google Scholar
  49. 49.
    Cao Q, Han X, Li L (2012) Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J Phys D 45:465001ADSCrossRefGoogle Scholar
  50. 50.
    Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 43:525–546ADSCrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Picchini U (2009) SDE Toolbox: simulation and estimation of stochastic differential equations with Matlab. http://sdetoolbox.sourceforge.net/
  52. 52.
    Barnsley LC, Carugo D, Aron M, Stride E (2017) Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays. Phys Med Biol 62:2333–2360CrossRefGoogle Scholar
  53. 53.
    Sprenger L, Dutz S, Schneider T, Odenbach S, Haefeli UO (2015) Simulations and experimental determination of the online separation of blood components with the help of microfluidic cascading spirals. Biomicrofluidics 9:044110CrossRefGoogle Scholar
  54. 54.
    Rukshin I, Mohrenweiser J, Yue P, Afkhami S (2017) Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting. Fluids 2(2):29CrossRefGoogle Scholar
  55. 55.
    Griffiths IM, Stone HA (2012) Axial dispersion via shear-enhanced diffusion in colloidal suspensions. Europhys Lett 97(5):58001-p1–58001-p6Google Scholar
  56. 56.
    Lavrova O, Matthies G, Mitkova T, Polevikov V, Tobiska L (2006) Numerical treatment of free surface problems in ferrohydrodynamics. J Phys 18(38):S2657–S2669MATHGoogle Scholar
  57. 57.
    Lavrova O, Matthies G, Polevikov V, Tobiska L (2004) Numerical modeling of the equilibrium shapes of a ferrofluid drop in an external magnetic field. Proc Appl Math Mech 4:704–705CrossRefMATHGoogle Scholar
  58. 58.
    Bashtovoi V, Lavrova OA, Polevikov VK, Tobiska L (2002) Computer modeling of the instability of a horizontal magnetic-fluid layer in a uniform magnetic field. J Magn Magn Mater 252:299–301ADSCrossRefGoogle Scholar
  59. 59.
    Matthies G, Tobiska L (2005) Numerical simulation of normal-field instability in the static and dynamic case. J Magn Magn Mater 289:346–349ADSCrossRefGoogle Scholar
  60. 60.
    Knieling H, Richter R, Rehberg I, Matthies G, Lange A (2007) Growth of surface undulations at the Rosensweig instability. Phys Rev E 76:066301ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free surface and interfacial flow. Ann Rev Fluid Mech 31:567–604ADSCrossRefMathSciNetGoogle Scholar
  62. 62.
    Smereka P, Sethian J (2003) Level-set methods for fluid interfaces. Ann Rev Fluid Mech 35:341–372ADSCrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Ann Rev Fluid Mech 30:139–166ADSCrossRefMathSciNetGoogle Scholar
  64. 64.
    Timonen JVI, Latikka M, Leibler L, Ras RHA, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341:253ADSCrossRefGoogle Scholar
  65. 65.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354ADSCrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    Bacri JC, Salin D (1982) Instability of ferrofluid magnetic drops under magnetic field. J Phys Lett 43:649–654CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of MathematicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations