Journal of Engineering Mathematics

, Volume 91, Issue 1, pp 121–142 | Cite as

An adaptive level set approach for modeling damage due to galvanic corrosion

  • Joseph W. Wilder
  • Curtis Clemons
  • Dmitry Golovaty
  • Kevin L. Kreider
  • Gerald W. Young
  • R. Scott Lillard


This article presents an approach to solving problems related to galvanic corrosion that involve moving boundaries (due to preferential corrosion of one of the metals in the system). The method incorporates an adaptive (node based, finite difference) grid technique for the treatment of boundary-related singularities that arise in the calculation of the electric potential. Simulation of the time evolution of the damage done by the corroding interface is performed using of a level set formulation. An analysis of the convergence of the method and a comparison with experimental data from the literature are included.


Adaptive grid Corrosion Level set 


  1. 1.
    Nestor P (2004) Electrochemistry and corrosion science. Springer, New YorkGoogle Scholar
  2. 2.
    Standard ASTM G82–98 (2003) Development and use of a galvanic series for predicting galvanic corrosion performance, Annual Book of ASTM Standards. ASTM International, WashingtonGoogle Scholar
  3. 3.
    Deshpande KB (2010) Validated numerical modeling of galvanic corrosion for couples: magnesium alloy (AE44)-mild steel and AE44-aluminum alloy (AA6063) in brine solution. Corros Sci 52:3514–3522CrossRefGoogle Scholar
  4. 4.
    Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, New YorkCrossRefMATHGoogle Scholar
  5. 5.
    Fox L (1971) Some experiments with singularities in linear elliptic partial differential equations. Proc R Soc Lond A 323:179–190CrossRefADSMATHGoogle Scholar
  6. 6.
    Duncan JW (1967) The accuracy of finite-difference solutions of Laplace’s equation. IEEE Trans Microw Theory Tech 15:575–582CrossRefADSGoogle Scholar
  7. 7.
    Wahlbin LB (1984) On the sharpness of certain estimates for \(H^1\) projections into finite element spaces: influence of a reentrant corner. Math Comput 42:1–8MATHMathSciNetGoogle Scholar
  8. 8.
    McCorquodale P, Colella P, Grote D, Vay JL (2004) A node-centered local refinement algorithm for Poisson’s equation in complex geometries. J Comput Phys 201:3460CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kreiss HH, Petersson NA, Ystrom J (2004) Difference approximations of the Neumann problem for the second order wave equation. SIAM J Numer Anal 42:1292–1323CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Babuska I, Chandra J, Flaherty JE (1983) Adaptive computational methods for partial differential equations. SIAM, PhiladelphiaMATHGoogle Scholar
  11. 11.
    Babuska I, Zienkiewicz OC, Gago J, de A Oliveira ER (1986) Accuracy estimates and adaptive refinements in finite element computations. Wiley, New YorkGoogle Scholar
  12. 12.
    Dorfler W (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal 33:1106–1124CrossRefMathSciNetGoogle Scholar
  13. 13.
    Schwab C (1999) P- and Hp-finite element methods: theory and applications in solid and fluid mechanics. Numerical mathematics and scientific computation. Clarendon, OxfordGoogle Scholar
  14. 14.
    Verfurth R (1996) A review of posteriori error estimation and adaptive mesh-refinement techniques. Teubner-Wiley, New YorkGoogle Scholar
  15. 15.
    Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock capturing schemes. J Comput Phys 77:439–471CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    Bardi M, Osher S (1991) The nonconvex multidimensional Riemann problem for Hamilton-Jacobi equations. SIAM J Math Anal 22:344–351CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Godunov SK (1959) A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Math Sbornik 47:357–393MathSciNetGoogle Scholar
  18. 18.
    Min C, Gibou F (2007) A second order accurate level set method on non-graded adaptive Cartesian grids. J Comp Phys 225:300–321CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    Roe PL (1986) Characteristic-based schemes for the Euler equations. Ann Rev Fluid Mech 18:337–365CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Aslam T (2004) A partial differential equation approach to multidimensional extrapolation. J Comput Phys 193:349–355CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    Russo G, Smereka P (2000) A remark on computing signed distance functions. J Comput Phys 163:51–67CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    Henshaw WD, Schwendeman DW (2008) Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J Comput Phys 227:7469–7502CrossRefADSMATHMathSciNetGoogle Scholar
  23. 23.
    Blum H, Dobrowolski M (1982) On finite element methods for elliptic equations on domains with corners. Computing 28:53–63CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Joseph W. Wilder
    • 1
  • Curtis Clemons
    • 1
  • Dmitry Golovaty
    • 1
  • Kevin L. Kreider
    • 1
  • Gerald W. Young
    • 1
  • R. Scott Lillard
    • 2
  1. 1.Department of MathematicsThe University of AkronAkronUSA
  2. 2.Department of Chemical EngineeringThe University of AkronAkronUSA

Personalised recommendations