Journal of Engineering Mathematics

, Volume 93, Issue 1, pp 99–112 | Cite as

Vector extrapolation applied to truncated singular value decomposition and truncated iteration

  • A. Bouhamidi
  • K. Jbilou
  • L. Reichel
  • H. Sadok
  • Z. Wang
Article

Abstract

This paper is concerned with the computation of accurate approximate solutions of linear systems of equations and linear least-squares problems with a very ill-conditioned matrix and error-contaminated data. The solution of these kinds of problems requires regularization. Common regularization methods include truncated singular value decomposition (TSVD) and truncated iteration with a Krylov subspace method. It can be difficult to determine when to truncate. Recently, it has been demonstrated that extrapolation of approximate solutions determined by TSVD gives a new sequence of approximate solutions that is less sensitive to errors in data than the original approximate solutions. The present paper describes a novel approach to determining a suitable truncation index by comparing the original and extrapolated approximate solutions. Applications to TSVD and the LSQR iterative method are presented.

Keywords

Discrete ill-posed problem LSQR Truncation criterion Truncated iteration  Truncated singular value decomposition Vector extrapolation 

References

  1. 1.
    Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, DordrechtCrossRefMATHGoogle Scholar
  2. 2.
    Hansen PC (1998) Rank-deficient and discrete ill-posed problems. SIAM, PhiladelphiaCrossRefMATHGoogle Scholar
  3. 3.
    Bouhamidi A, Jbilou K, Reichel L, Sadok H (2011) An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure. Linear Algebra Appl 434:1677–1688CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Jbilou K, Reichel L, Sadok H (2009) Vector extrapolation enhanced TSVD for linear discrete ill-posed problems. Numer Algorithms 51:195–208CrossRefADSMATHMathSciNetGoogle Scholar
  5. 5.
    Kindermann S (2011) Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron Trans Numer Anal 38:233–257MATHMathSciNetGoogle Scholar
  6. 6.
    Bauer F, Lukas MA (2011) Comparing parameter choice methods for regularization of ill-posed problem. Math Comput Simul 81:1795–1841CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Reichel L, Rodriguez G (2013) Old and new parameter choice rules for discrete ill-posed problems. Numer Algorithms 63:65–87CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Brezinski C, Redivo Zaglia M, Rodriguez G, Seatzu S (1998) Extrapolation techniques for ill-conditioned linear systems. Numer Math 81:1–29CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Brezinski C, Rodriguez G, Seatzu S (2008) Error estimates for linear systems with applications to regularization. Numer Algorithms 49:85–104CrossRefADSMATHMathSciNetGoogle Scholar
  10. 10.
    Brezinski C, Rodriguez G, Seatzu S (2009) Error estimates for the regularization of least squares problems. Numer Algorithms 51:61–76CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    Reichel L, Rodriguez G, Seatzu S (2009) Error estimates for large-scale ill-posed problems. Numer Algorithms 51:341–361CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    Brezinski C, Redivo Zaglia M (1991) Extrapolation methods: theory and practice. North-Holland, AmsterdamMATHGoogle Scholar
  13. 13.
    Duminil S, Sadok H (2011) Reduced rank extrapolation applied to electronic structure computations. Electron Trans Numer Anal 38:347–362MATHMathSciNetGoogle Scholar
  14. 14.
    Jbilou K, Sadok H (2000) Vector extrapolation methods. Applications and numerical comparison. J Comput Appl Math 122:149–165CrossRefADSMATHMathSciNetGoogle Scholar
  15. 15.
    Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw 8:43–71CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATHGoogle Scholar
  17. 17.
    Eddy RP (1979) Extrapolation to the limit of a vector sequence. In: Wang PCC (ed) Information linkage between applied mathematics and industry. Academic Press, New York, pp 387–396Google Scholar
  18. 18.
    Mesina M (1977) Convergence acceleration for the iterative solution of \(x=Ax+f\). Comput Method Appl Mech Eng 10:165–173CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    Ford WD, Sidi A (1988) Recursive algorithms for vector extrapolation methods. Appl Numer Math 4:477–489CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Hansen PC (2007) Regularization tools version 4.0 for MATLAB 7.3. Numer Algorithms 46:189–194CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    Baart ML (1982) The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems. IMA J Numer Anal 2:241–247CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Wing GM (1991) A primer on integral equations of the first kind. SIAM, PhiladelphiaCrossRefMATHGoogle Scholar
  23. 23.
    Baker CTH (1977) The numerical treatment of integral equations. Clarendon Press, OxfordMATHGoogle Scholar
  24. 24.
    Shaw CB Jr (1972) Improvements of the resolution of an instrument by numerical solution of an integral equation. J Math Anal Appl 37:83–112CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Delves LM, Mohamed JL (1985) Computational methods for integral equations. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  26. 26.
    Carasso AS (1982) Determining surface temperatures from interior observations. SIAM J Appl Math 42:558–574CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Bouhamidi
    • 1
  • K. Jbilou
    • 1
  • L. Reichel
    • 2
  • H. Sadok
    • 1
  • Z. Wang
    • 3
  1. 1.Laboratoire de Mathématiques Pures et Appliquées, Centre Universtaire de la Mi-VoixUniversité du Littoral Calais CedexFrance
  2. 2.Department of Mathematical SciencesKent State UniversityKentUSA
  3. 3.Department of Mathematics, College of ScienceNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations