Advertisement

Journal of Engineering Mathematics

, Volume 82, Issue 1, pp 31–38 | Cite as

Complete point symmetry group of the barotropic vorticity equation on a rotating sphere

  • Elsa Dos Santos Cardoso-Bihlo
  • Roman O. Popovych
Article

Abstract

The complete point symmetry group of the barotropic vorticity equation on a rotating sphere is determined. The method we use relies on the invariance of megaideals of the maximal Lie invariance algebra of a system of differential equations under automorphisms generated by the associated point symmetry group. A convenient set of megaideals is found for the maximal Lie invariance algebra of the spherical vorticity equation. We prove that there are only two independent (up to composition with continuous point symmetry transformations) discrete symmetries for this equation.

Keywords

Barotropic vorticity equation on a sphere Lie invariance algebra Lie symmetry Megaideal Point symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bihlo A, Popovych RO (2009) Lie symmetries and exact solutions of the barotropic vorticity equation. J Math Phys 50:123102, arXiv:0902.4099Google Scholar
  2. 2.
    Bihlo A, Popovych RO  (2012) Lie reduction and exact solutions of vorticity equation on rotating sphere. Phys Lett A 376:1179–1184, arXiv:1112.3019Google Scholar
  3. 3.
    Hydon PE (2000) How to construct the discrete symmetries of partial differential equations. Eur J Appl Math 11: 515–527MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hydon PE (2000) Symmetry methods for differential equations. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  5. 5.
    Bihlo A, Popovych RO (2011) Point symmetry group of the barotropic vorticity equation. In: Proceedings of 5th Workshop “Group analysis of differential equations & integrable systems”. Protaras, Cyprus, June 6–10, 2010, pp 15–27, arXiv:1009.1523Google Scholar
  6. 6.
    Bihlo A, Dos Santos Cardoso-Bihlo EM, Popovych RO (2012) Complete group classification of a class of nonlinear wave equations. J. Math Phys 53:123515Google Scholar
  7. 7.
    Bihlo A, Popovych RO (2011) Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem. J Math Phys 52: 033103, arXiv:1010.1542Google Scholar
  8. 8.
    Kingston JG, Sophocleous C (1991) On point transformations of a generalised Burgers equation. Phys Lett A 155: 15–19MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Kingston JG, Sophocleous C (1998) On form-preserving point transformations of partial differential equations. J Phys A 31: 1597–1619MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Kingston JG, Sophocleous C (2001) Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation, Internat. J Non-Linear Mech 36: 987–997MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Popovych RO, Bihlo A (2012) Symmetry preserving parameterization schemes. J Math Phys 53:073102, arXiv:1010.3010Google Scholar
  12. 12.
    Popovych RO, Kunzinger M, and Eshraghi H (2010) Admissible transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl Math 109:315–359, arXiv:0708.3457Google Scholar
  13. 13.
    Vaneeva OO, Johnpillai AG, Popovych RO, Sophocleous C (2007) Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities. J Math Anal Appl 330:1363–1386, arXiv:math-ph/0605081Google Scholar
  14. 14.
    Vaneeva OO, Popovych RO, Sophocleous C (2009) Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source. Acta Appl Math 106:1–46, arXiv:0708.3457Google Scholar
  15. 15.
    Platzman GW (1960) The spectral form of the vorticity equation. J Meteor 17: 635–644MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bluman G, Kumei S (1989) Symmetries and differential equations. Springer, New YorkCrossRefzbMATHGoogle Scholar
  17. 17.
    Olver PJ (2000) Application of Lie groups to differential equations. Springer, New YorkGoogle Scholar
  18. 18.
    Head AK (1993) LIE, a PC program for Lie analysis of differential equations. Comput Phys Commun 77:241–248. http://www.cmst.csiro.au/LIE/LIE.htm
  19. 19.
    Rocha Filho TM, Figueiredo A (2011) [SADE] a Maple package for the symmetry analysis of differential equations. Comput Phys Commun 182:467–476, arXiv:1004.3339Google Scholar
  20. 20.
    Vu KT, Jefferson GF, Carminati J (2012) Finding higher symmetries of differential equations using the MAPLE package DESOLVII. Comput Phys Commun 183: 1044–1054MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Popovych RO, Boyko VM, Nesterenko MO, Lutfullin MW (2003) Realizations of real low-dimensional Lie algebras. J Phys A 36:7337–7360, see arXiv:math-ph/0301029v7 for an extended and revised versionGoogle Scholar
  22. 22.
    Popovych R, Vaneeva O, Ivanova N (2007) Potential nonclassical symmetries and solutions of fast diffusion equation. Phys Lett A 362:166–173, arXiv:math-ph/0506067Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Elsa Dos Santos Cardoso-Bihlo
    • 1
  • Roman O. Popovych
    • 1
    • 2
  1. 1.Wolfgang Pauli InstituteViennaAustria
  2. 2.Institute of Mathematics of National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations