Journal of Engineering Mathematics

, Volume 82, Issue 1, pp 173–185 | Cite as

The Coulomb potential and the paradoxes of PT symmetrization

Article
  • 86 Downloads

Abstract

In a parallel to the standard quantum version of the Coulomb/Kepler problem, an alternative Coulomb/Kepler quantum model is formulated and solved. The new model is shown to exhibit not too dissimilar phenomenological (i.e., spectral and scattering) as well as mathematical (i.e., exact-solvability) properties. The paper is made self-contained by explaining the underlying innovative quantization strategy that assigns an entirely new role to symmetries.

Keywords

Ad hoc inner products Complex couplings Crypto-Hermitian observables Quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Messiah A (1991) Quantum mechanics, vol I. North Holland, AmsterdamGoogle Scholar
  2. 2.
    Messiah A (1991) Quantum mechanics vol II. North Holland, AmsterdamGoogle Scholar
  3. 3.
    Scholtz FG, Geyer HB, Hahne FJW (1992) Quasi-Hermitian operators in quantum mechanics and the variational principle. Ann Phys (NY) 213: 74–101MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    Bender CM (2007) Making sense of non-Hermitian Hamiltonians. Rep Prog Phys 70: 947–1018ADSCrossRefGoogle Scholar
  5. 5.
    Buslaev V, Grechi V (1993) Equivalence of unstable anharmonic oscillators and double wells. J Phys A Math Gen 26: 5541–5549ADSCrossRefMATHGoogle Scholar
  6. 6.
    Bender CM, Boettcher S (1998) Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys Rev Lett 80: 5243–5246MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Dorey P, Dunning C, Tateo R (2001) Spectral equivalences, Bethe Ansatz equations, and reality properties in PT-symmetric quantum mechanics. J Phys A Math Gen 34: 5679–5704MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    Znojil M (2009) Three-Hilbert-space formulation of quantum mechanics. SIGMA vol 5, id 001, pp 19, arXiv:0901.0700Google Scholar
  9. 9.
    Langer H, Tretter Ch (2004) A Krein space approach to PT symmetry. Czech J Phys 54: 1113–1120MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    Hook D (2012) The PT Symmeter. http://ptsymmetry.net
  11. 11.
    Znojil M, Lévai G (2000) The Coulomb–harmonic-oscillator correspondence in PT symmetric quantum mechanics. Phys Lett A 271: 327–333MathSciNetADSCrossRefMATHGoogle Scholar
  12. 12.
    Znojil M, Siegl P, Lévai G (2009) Asymptotically vanishing PT-symmetric potentials and negative-mass Schroedinger equations. Phys Lett A 373: 1921–1924MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    Lévai G, Siegl P, Znojil M (2009) Scattering in the PT-symmetric Coulomb potential. J Phys A Math Theor 42: 295201CrossRefGoogle Scholar
  14. 14.
    Znojil M (2012) N-site-lattice analogues of V(x) = i x 3. Ann Phys (NY) 327: 893–913MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    Znojil M (2011), Planarizable supersymmetric quantum toboggans. SIGMA vol 7, paper 018, pp 24, arXiv:1102.5162. doi:10.3842/SIGMA.2011.018
  16. 16.
    Mostafazadeh A (2006) Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic oscillator. J Phys A Math Gen 39: 10171–10188MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    Mostafazadeh A (2010) Pseudo-Hermitian representation of quantum mechanics. Int J Geom Methods Mod Phys 7: 1191–1306MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hilgevoord J (2001) Time in quantum mechanics. Am J Phys 70: 301–306ADSCrossRefGoogle Scholar
  19. 19.
    Schomerus H (2011) Universal routes to spontaneous PT-symmetry breaking in non-Hermitian quantum systems. Phys Rev A 83: 030101(R)ADSCrossRefGoogle Scholar
  20. 20.
    Rüter C E, Makris R, El-Ganainy K G et al (2010) Observation of parity-time symmetry in optics. Nat Phys 6: 192–195CrossRefGoogle Scholar
  21. 21.
    Jakubský V (2007) Thermodynamics of pseudo-Hermitian systems in equilibrium. Mod Phys Lett A 22: 1075–1084ADSCrossRefMATHGoogle Scholar
  22. 22.
    Joglekar Y N, Karr W A (2011) Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices. Phys Rev E 83: 031122MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Znojil M (2008) Scattering theory with localized non-Hermiticities. Phys Rev D 78: 025026. doi:10.1103/PhysRevD.78.025026 MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Jones H F (2007) Scattering from localized non-Hermitian potentials. Phys Rev D 76: 125003ADSCrossRefGoogle Scholar
  25. 25.
    Znojil M (2004) Fragile PT-symmetry in a solvable model. J Math Phys 45: 4418–4430MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    Znojil M (2009) Fundamental length in quantum theories with PT-symmetric Hamiltonians. Phys Rev D 80: 045022MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Znojil M (2008) Horizons of stability. J Phys A Math Theor 41: 244027MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Kato T (1966) Perturbation theory for linear operators. Springer, Berlin, p 64CrossRefMATHGoogle Scholar
  29. 29.
    Znojil M (2007) A return to observability near exceptional points in a schematic PT-symmetric model. Phys Lett B 647: 225–230MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    Znojil M (2012) Quantum Big Bang without fine-tuning in a toy-model. J Phys Conf Ser 343: 012136ADSCrossRefGoogle Scholar
  31. 31.
    Znojil M (2009) Fundamental length in quantum theories with PT-symmetric Hamiltonians II: the case of quantum graphs. Phys Rev D 80: 105004ADSCrossRefGoogle Scholar
  32. 32.
    Chen J-H, Pelantová E, Znojil M (2008) Classification of the conditionally observable spectra exhibiting central symmetry. Phys Lett A 372: 1986–1989ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Nuclear Physics Institute, Academy of Sciences of the Czech RepublicŘežCzech Republic

Personalised recommendations